Midterm II

Abstract Algebra 1
MATH 3140
Fall 2021
Friday October 29, 2021

NAME:

PRACTICE EXAM SOLUTIONS

| Question: | $\mathbf{1}$ | 2 | 3 | 4 | 5 | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Points: | 20 | 20 | 20 | 20 | 20 | 100 |
| Score: | | | | | | |

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- Either write your solutions directly on this exam or write the solution to each problem on a separate piece of paper.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 50 minutes to complete the exam. Do not forget to leave yourself time (at least 5 minutes) at the end to upload your exam.

1. (a) (5 points) • Is the permutation $\sigma=(1,6,4)(2,5) \in S_{6}$ even or odd?

SOLUTION:

```
\sigma is odd.
```

We have

$$
\sigma=(1,6,4)(2,5)=(1,6)(6,4)(2,5)
$$

is the product of an odd number of transpositions.
(b) (5 points) Is the permutation σ^{2} even or odd?

SOLUTION:

$$
\sigma^{2} \text { is even. }
$$

The square of any permutation is even.
(c) (5 points) Compute $|\sigma|$; i.e., the order of the element σ in the group S_{6}.

SOLUTION:

$$
|\sigma|=6
$$

The order of $(1,6,4)$ is 3 and the order of $(2,5)$ is 2 . As σ is equal to the product of these disjoint cycles, it follows that $|\sigma|=\operatorname{lcm}(3,2)=6$.
(d) (5 points) With σ as above and $\tau=(5,3,2)$, compute $\sigma \tau$ (as a product of disjoint cycles).

SOLUTION:

$$
\sigma \tau=(1,6,4)(3,5)
$$

We have

$$
\sigma \tau=(1,6,4)(2,5)(5,3,2)=(1,6,4)(3,5)
$$

1
20 points

2. - Let A be a set, and let $G \leq S_{A}$ be a subgroup of the group of permutations S_{A} of A. For an element $a \in A$, define $G_{a}:=\{\sigma \in G: \sigma(a)=a\}$.
(a) (10 points) For $a \in A$, show that G_{a} is a subgroup of G.

SOLUTION

Solution. Certainly we have $e \in G_{a}$. Now if $\sigma, \tau \in G_{a}$, then $(\sigma \tau)(a)=\sigma(\tau(a))=\sigma(a)=a$, so that $\sigma \tau \in G_{a}$. Finally, if $\sigma \in G_{a}$, I claim that $\sigma^{-1}(a)=a$, so that $\sigma^{-1} \in G_{a}$. Indeed, $\sigma(a)=a$, so that applying σ^{-1} to both sides we obtain $\sigma^{-1}(\sigma(a))=\sigma^{-1}(a)$. Focusing on the left hand side, we have $\sigma^{-1}(\sigma(a))=\left(\sigma^{-1} \sigma\right)(a)=e(a)=a$, proving the claim. Thus G_{a} is a subgroup.
(b) (10 points) Let $a, b \in A$, and suppose there exists $\sigma \in G$ such that $b=\sigma(a)$. Show that G_{a} and G_{b} have the same cardinality.

SOLUTION

Solution. Let $a, b \in A$, and suppose there exists $\sigma \in G$ such that $b=\sigma(a)$. Note that this also implies that $\sigma^{-1}(b)=a$. From the definition of cardinality, we need to show there is a bijective map (or, "one-to-one and onto function") $f: G_{a} \rightarrow G_{b}$. I claim there is a bijective map (or, "one-to-one and onto function")

$$
f: G_{a} \longrightarrow G_{b}, \quad \text { given by } \tau \mapsto \sigma \tau \sigma^{-1} .
$$

First, let us check this map (or, "function") is well-defined; i.e., that $\sigma \tau \sigma^{-1} \in G_{b}$. To this end, suppose $\tau \in G_{a}$. Then $\left(\sigma \tau \sigma^{-1}\right)(b)=\sigma\left(\tau\left(\sigma^{-1}(b)\right)=\sigma(\tau(a))=\sigma(a)=b\right.$. Thus $\sigma \tau \sigma^{-1} \in G_{b}$.

Now let us check that f is bijective (or, "one-to-one and onto") by constructing an inverse map (or, "function")

$$
f^{-1}: G_{b} \longrightarrow G_{a}, \quad \mu \mapsto \sigma^{-1} \mu \sigma .
$$

The same argument as above shows this map (or, "function") is well-defined. Now observe that $f^{-1} f(\tau)=f^{-1}\left(\sigma \tau \sigma^{-1}\right)=\sigma^{-1}\left(\sigma \tau \sigma^{-1}\right) \sigma=\tau$, and $f f^{-1}(\mu)=\sigma\left(\sigma^{-1} \mu \sigma\right) \sigma^{-1}=\mu$. Thus f^{-1} is the inverse map (or, "function") of f, and so f is bijective (or, "one-to-one and onto"). Thus, by definition, the cardinality of G_{a} is the same as the cardinality of G_{b}.
3. - Consider the dihedral group D_{n}, with $n \geq 3$. Recall the notation we have been using: D_{n} has identity element I, and is generated by elements R and D, satisfying the relations $R^{n}=D^{2}=I$ and $R D=D R^{-1}$. Consider the cyclic subgroup $\left\langle R^{2}\right\rangle$.
(a) (10 points) Show that $\left\langle R^{2}\right\rangle$ is a normal subgroup of D_{n}.

SOLUTION

Solution. To show that $\left\langle R^{2}\right\rangle$ is normal in D_{n}, it suffices to check for all $g \in D_{n}$ that $g\left\langle R^{2}\right\rangle g^{-1} \subseteq\left\langle R^{2}\right\rangle$. (For a subgroup H of a group G, we have seen that H is normal if and only if $\mathrm{gHg}^{-1} \subseteq H$ for all $g \in G$.) So let $R^{a_{1}} D^{b_{1}} \in D_{n}$ and let $R^{2 k} \in\left\langle R^{2}\right\rangle$. Then

$$
R^{a_{1}} D^{b_{1}} R^{2 k}\left(R^{a_{1}} D^{b_{1}}\right)^{-1}=R^{a_{1}} D^{b_{1}} R^{2 k} D^{b_{1}} R^{-a_{1}}=R^{a_{1}} D^{b_{1}} D^{b_{1}} R^{(-1)^{b_{1}} 2 k} R^{-a_{1}}=R^{(-1)^{b_{1}} 2 k} \in\left\langle R^{2}\right\rangle .
$$

Thus $\left\langle R^{2}\right\rangle$ is normal in D_{n}.
(b) (10 points) Find the order of the group $D_{n} /\left\langle R^{2}\right\rangle$. [Hint: this may depend on the parity of n.]

SOLUTION

Solution.

$$
\left|D_{n} /\left\langle R^{2}\right\rangle\right|=2 \text { if } n \text { is odd, and } 4 \text { if } n \text { is even }
$$

To see this, we note that the order of R in D_{n} is n. Consequently, if n is odd, then $\left\langle R^{2}\right\rangle=\langle R\rangle$, which has order n. If n is even, then $\left\langle R^{2}\right\rangle \neq\langle R\rangle$ and the order of $\left\langle R^{2}\right\rangle$ is $n / 2$. By Lagrange's Theorem, the order of $D_{4} /\left\langle R^{2}\right\rangle$ is then either $2 n / n=2$ (if n is odd) or $2 n /(n / 2)=4$ (if n is even). (Note that in the latter case, the quotient is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and not to \mathbb{Z}_{4}, since the quotient has two elements of order 2, namely, R and D.)
4. \bullet Recall that for a commutative ring R with unity $1 \neq 0$, we define $R[x]$ to be the ring of polynomials in x with coefficients in R. Consider the map

$$
\begin{gathered}
\phi: \mathbb{Z}[x] \longrightarrow \mathbb{Z}_{4}[x] \\
\sum_{k=0}^{n} a_{k} x^{k} \mapsto \sum_{k=0}^{n}\left[a_{k}\right] x^{k},
\end{gathered}
$$

where $\left[a_{k}\right]=a_{k}(\bmod 4)$.
(a) (10 points) Show that ϕ is a homomorphism of rings.

SOLUTION

Solution. First we must show for all $p(x), q(x) \in \mathbb{Z}[x]$ that

$$
\phi(p(x)+q(x))=\phi(p(x))+\phi(q(x)) \text { and } \phi(p(x) q(x))=\phi(p(x)) \phi(q(x)) .
$$

To do this, let us suppose that $p(x)=\sum_{k=0}^{n} a_{k} x^{k}$ and $q(x)=\sum_{j=0}^{m} b_{j} x^{j}$; since addition and multiplication are commutative, we may assume that $n \leq m$, and in fact, taking $a_{k}=0$ for $k>n$, we may assume $n=m$. Then

$$
\begin{aligned}
\phi(p(x)+q(x))= & \phi\left(\sum_{k=0}^{n} a_{k} x^{k}+\sum_{j=0}^{n} b_{j} x^{j}\right)=\phi\left(\sum_{k=0}^{n}\left(a_{k}+b_{k}\right) x^{k}\right)=\sum_{k=0}^{n}\left[a_{k}+b_{k}\right] x^{k} \\
& =\sum_{k=0}^{n}\left[a_{k}\right] x^{k}+\sum_{j=0}^{n}\left[b_{j}\right] x^{j}=\phi(p(x))+\phi(q(x)) .
\end{aligned}
$$

Similarly,

$$
\begin{gathered}
\phi(p(x) \cdot q(x))=\phi\left(\sum_{k=0}^{n} a_{k} x^{k} \cdot \sum_{j=0}^{n} b_{j} x^{j}\right)=\phi\left(\sum_{i=0}^{2 n} \sum_{k=0}^{i}\left(a_{k} b_{i-k}\right) x^{i}\right)=\sum_{i=0}^{2 n} \sum_{k=0}^{i}\left[a_{k}\right]\left[b_{i-k}\right] x^{i} \\
=\sum_{k=0}^{n}\left[a_{k}\right] x^{k} \cdot \sum_{j=0}^{n}\left[b_{j}\right] x^{j}=\phi(p(x)) \cdot \phi(q(x)) .
\end{gathered}
$$

Thus ϕ is a homomorphism of rings.
(b) (10 points) Describe the kernel of ϕ. (Do not just write down the definition; you need to describe an explicit subset of $\mathbb{Z}[x]$.)

SOLUTION

Solution. We can describe the kernel as

$$
\operatorname{ker} \phi=4 \mathbb{Z}[x]
$$

Indeed, suppose that $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in \operatorname{ker} \phi$. Then $\left[a_{k}\right]=0$ for all $k=0, \ldots, n$. Thus $a_{k} \in 4 \mathbb{Z}$ for all $k=0, \ldots, n$.
5. (20 points) • In a commutative ring with unity, show that $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$.

SOLUTION

Solution. Since we are in a commutative ring with unity, when writing out

$$
(a+b)^{n}=(a+b)(a+b) \cdots(a+b)
$$

one can deduce that the number of monomials of the form $a^{k} b^{n-k}$ in the expansion will be $\binom{n}{k}$, corresponding to choosing k of the n factors above from which to take an a, and then taking a b from the remaining $n-k$ factors.

Here is another argument using induction. First observe that

$$
\begin{gathered}
\binom{n}{k-1}+\binom{n}{k}=\frac{n!}{(n-k+1)!(k-1)!}+\frac{n!}{(n-k)!k!}=\frac{n!k}{(n-k+1)!k!}+\frac{n!(n-k+1)}{(n-k+1)!k!} \\
=\frac{(n+1)!}{(n+1-k)!k!}=\binom{n+1}{k}
\end{gathered}
$$

Now, using this, we will prove the assertion of problem using induction. We start with the case $n=1$, and we check that

$$
\sum_{k=0}^{1}\binom{1}{k} a^{k} b^{1-k}=b+a=(a+b)^{1}
$$

We now perform the inductive step. We assume that $(a+b)^{m}=\sum_{k=0}^{m}\binom{m}{k} a^{k} b^{m-k}$ for all $m \leq n$ for some $n \geq 1$. We then show that

$$
(a+b)^{n+1}=\sum_{k=0}^{n+1}\binom{n+1}{k} a^{k} b^{n+1-k}
$$

Here is the computation:

$$
\begin{gathered}
(a+b)^{n}(a+b)=\left(\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}\right)(a+b)=\left(\sum_{k=0}^{n}\binom{n}{k} a^{k+1} b^{n-k}\right)+\left(\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n+1-k}\right) \\
=\binom{n}{0} b^{n+1}+\sum_{k=1}^{n}\left(\binom{n}{k-1}+\binom{n}{k}\right) a^{k} b^{n+1-k}+\binom{n}{n} a^{n+1} \\
=\binom{n+1}{0} b^{n+1}+\sum_{k=1}^{n}\binom{n+1}{k} a^{k} b^{n+1-k}+\binom{n+1}{n+1} a^{n+1}=\sum_{k=0}^{n+1}\binom{n+1}{k} a^{k} b^{n+1-k}
\end{gathered}
$$

