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• The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and
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• You may not discuss the exam with anyone except me, in any way, under any circumstances.

• You must explain your answers, and you will be graded on the clarity of your solutions.

• Either write your solutions directly on this exam or write the solution to each problem on a separate

piece of paper.
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• You have 50 minutes to complete the exam. Do not forget to leave yourself time (at least 5 minutes)

at the end to upload your exam.



1. (a) (5 points) • Is the permutation σ = (1, 6, 4)(2, 5) ∈ S6 even or odd?

SOLUTION:

σ is odd.

We have

σ = (1, 6, 4)(2, 5) = (1, 6)(6, 4)(2, 5)

is the product of an odd number of transpositions.

(b) (5 points) Is the permutation σ2 even or odd?

SOLUTION:

σ2 is even.

The square of any permutation is even.

(c) (5 points) Compute |σ|; i.e., the order of the element σ in the group S6.

SOLUTION:

|σ| = 6

The order of (1, 6, 4) is 3 and the order of (2, 5) is 2. As σ is equal to the product of these disjoint

cycles, it follows that |σ| = lcm(3, 2) = 6.

(d) (5 points) With σ as above and τ = (5, 3, 2), compute στ (as a product of disjoint cycles).

SOLUTION:

στ = (1, 6, 4)(3, 5)

We have

στ = (1, 6, 4)(2, 5)(5, 3, 2) = (1, 6, 4)(3, 5).
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2. • Let A be a set, and let G ≤ SA be a subgroup of the group of permutations SA of A. For an element

a ∈ A, define Ga := {σ ∈ G : σ(a) = a}.

(a) (10 points) For a ∈ A, show that Ga is a subgroup of G.

SOLUTION

Solution. Certainly we have e ∈ Ga. Now if σ, τ ∈ Ga, then (στ)(a) = σ(τ(a)) = σ(a) = a, so that

στ ∈ Ga. Finally, if σ ∈ Ga, I claim that σ−1(a) = a, so that σ−1 ∈ Ga. Indeed, σ(a) = a, so that

applying σ−1 to both sides we obtain σ−1(σ(a)) = σ−1(a). Focusing on the left hand side, we have

σ−1(σ(a)) = (σ−1σ)(a) = e(a) = a, proving the claim. Thus Ga is a subgroup.

(b) (10 points) Let a, b ∈ A, and suppose there exists σ ∈ G such that b = σ(a). Show that Ga and Gb

have the same cardinality.

SOLUTION

Solution. Let a, b ∈ A, and suppose there exists σ ∈ G such that b = σ(a). Note that this also

implies that σ−1(b) = a. From the definition of cardinality, we need to show there is a bijective map

(or, “one-to-one and onto function”) f : Ga → Gb. I claim there is a bijective map (or, “one-to-one

and onto function”)

f : Ga −→ Gb, given by τ 7→ στσ−1.

First, let us check this map (or, “function”) is well-defined; i.e., that στσ−1 ∈ Gb. To this end,

suppose τ ∈ Ga. Then (στσ−1)(b) = σ(τ(σ−1(b)) = σ(τ(a)) = σ(a) = b. Thus στσ−1 ∈ Gb.

Now let us check that f is bijective (or, “one-to-one and onto”) by constructing an inverse map (or,

“function”)

f−1 : Gb −→ Ga, µ 7→ σ−1µσ.

The same argument as above shows this map (or, “function”) is well-defined. Now observe that

f−1 f (τ) = f−1(στσ−1) = σ−1(στσ−1)σ = τ, and f f−1(µ) = σ(σ−1µσ)σ−1 = µ. Thus f−1 is

the inverse map (or, “function”) of f , and so f is bijective (or, “one-to-one and onto”). Thus, by

definition, the cardinality of Ga is the same as the cardinality of Gb.
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3. • Consider the dihedral group Dn, with n ≥ 3. Recall the notation we have been using: Dn has identity

element I, and is generated by elements R and D, satisfying the relations Rn = D2 = I and RD = DR−1.

Consider the cyclic subgroup 〈R2〉.

(a) (10 points) Show that 〈R2〉 is a normal subgroup of Dn.

SOLUTION

Solution. To show that 〈R2〉 is normal in Dn, it suffices to check for all g ∈ Dn that g〈R2〉g−1 ⊆ 〈R2〉.

(For a subgroup H of a group G, we have seen that H is normal if and only if gHg−1 ⊆ H for all

g ∈ G.) So let Ra1 Db1 ∈ Dn and let R2k ∈ 〈R2〉. Then

Ra1 Db1 R2k(Ra1 Db1)−1 = Ra1 Db1 R2kDb1 R−a1 = Ra1 Db1 Db1 R(−1)b1 2kR−a1 = R(−1)b1 2k ∈ 〈R2〉.

Thus 〈R2〉 is normal in Dn.

(b) (10 points) Find the order of the group Dn/〈R2〉. [Hint: this may depend on the parity of n.]

SOLUTION

Solution.

|Dn/〈R2〉| = 2 if n is odd, and 4 if n is even

To see this, we note that the order of R in Dn is n. Consequently, if n is odd, then 〈R2〉 = 〈R〉, which

has order n. If n is even, then 〈R2〉 6= 〈R〉 and the order of 〈R2〉 is n/2. By Lagrange’s Theorem,

the order of D4/〈R2〉 is then either 2n/n = 2 (if n is odd) or 2n/(n/2) = 4 (if n is even). (Note that

in the latter case, the quotient is isomorphic to Z2 ×Z2, and not to Z4, since the quotient has two

elements of order 2, namely, R and D.)
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4. • Recall that for a commutative ring R with unity 1 6= 0, we define R[x] to be the ring of polynomials in

x with coefficients in R. Consider the map

φ : Z[x] −→ Z4[x]

n

∑
k=0

akxk 7→
n

∑
k=0

[ak]xk,

where [ak] = ak (mod 4).

(a) (10 points) Show that φ is a homomorphism of rings.

SOLUTION

Solution. First we must show for all p(x), q(x) ∈ Z[x] that

φ(p(x) + q(x)) = φ(p(x)) + φ(q(x)) and φ(p(x)q(x)) = φ(p(x))φ(q(x)).

To do this, let us suppose that p(x) = ∑n
k=0 akxk and q(x) = ∑m

j=0 bjxj; since addition and multiplication

are commutative, we may assume that n ≤ m, and in fact, taking ak = 0 for k > n, we may assume

n = m. Then

φ(p(x) + q(x)) = φ

(
n

∑
k=0

akxk +
n

∑
j=0

bjxj

)
= φ

(
n

∑
k=0

(ak + bk)xk

)
=

n

∑
k=0

[ak + bk]xk

=
n

∑
k=0

[ak]xk +
n

∑
j=0

[bj]xj = φ(p(x)) + φ(q(x)).

Similarly,

φ(p(x) · q(x)) = φ

(
n

∑
k=0

akxk ·
n

∑
j=0

bjxj

)
= φ

(
2n

∑
i=0

i

∑
k=0

(akbi−k)xi

)
=

2n

∑
i=0

i

∑
k=0

[ak][bi−k]xi

=
n

∑
k=0

[ak]xk ·
n

∑
j=0

[bj]xj = φ(p(x)) · φ(q(x)).

Thus φ is a homomorphism of rings.

(b) (10 points) Describe the kernel of φ. (Do not just write down the definition; you need to describe an

explicit subset of Z[x].)
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SOLUTION

Solution. We can describe the kernel as

ker φ = 4Z[x]

Indeed, suppose that p(x) = ∑n
k=0 akxk ∈ ker φ. Then [ak] = 0 for all k = 0, . . . , n. Thus ak ∈ 4Z

for all k = 0, . . . , n.
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5. (20 points) • In a commutative ring with unity, show that (a + b)n =
n

∑
k=0

(
n
k

)
akbn−k.

SOLUTION

Solution. Since we are in a commutative ring with unity, when writing out

(a + b)n = (a + b)(a + b) · · · (a + b)

one can deduce that the number of monomials of the form akbn−k in the expansion will be (n
k), corresponding

to choosing k of the n factors above from which to take an a, and then taking a b from the remaining

n− k factors.

Here is another argument using induction. First observe that

(
n

k− 1

)
+

(
n
k

)
=

n!
(n− k + 1)!(k− 1)!

+
n!

(n− k)!k!
=

n!k
(n− k + 1)!k!

+
n!(n− k + 1)
(n− k + 1)!k!

=
(n + 1)!

(n + 1− k)!k!
=

(
n + 1

k

)
.

Now, using this, we will prove the assertion of problem using induction. We start with the case n = 1,

and we check that
1

∑
k=0

(
1
k

)
akb1−k = b + a = (a + b)1.

We now perform the inductive step. We assume that (a + b)m = ∑m
k=0 (

m
k )akbm−k for all m ≤ n for some

n ≥ 1. We then show that

(a + b)n+1 =
n+1

∑
k=0

(
n + 1

k

)
akbn+1−k.

Here is the computation:

(a + b)n(a + b) =

(
n

∑
k=0

(
n
k

)
akbn−k

)
(a + b) =

(
n

∑
k=0

(
n
k

)
ak+1bn−k

)
+

(
n

∑
k=0

(
n
k

)
akbn+1−k

)

=

(
n
0

)
bn+1 +

n

∑
k=1

((
n

k− 1

)
+

(
n
k

))
akbn+1−k +

(
n
n

)
an+1

=

(
n + 1

0

)
bn+1 +

n

∑
k=1

(
n + 1

k

)
akbn+1−k +

(
n + 1
n + 1

)
an+1 =

n+1

∑
k=0

(
n + 1

k

)
akbn+1−k.
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