Midterm II

Abstract Algebra 1

MATH 3140
Fall 2021
Friday October 29, 2021

NAME:

PRACTICE EXAM

Question:	$[\mathbf{1}$	$[2$	3	$[4$	5	Total
Points:	20	20	20	20	20	100
Score:						

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- Either write your solutions directly on this exam or write the solution to each problem on a separate piece of paper.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 50 minutes to complete the exam. Do not forget to leave yourself time (at least 5 minutes) at the end to upload your exam.

1. (a) (5 points) • Is the permutation $\sigma=(1,6,4)(2,5) \in S_{6}$ even or odd?
(b) (5 points) Is the permutation σ^{2} even or odd?
(c) (5 points) Compute $|\sigma|$; i.e., the order of the element σ in the group S_{6}.
(d) (5 points) With σ as above and $\tau=(5,3,2)$, compute $\sigma \tau$ (as a product of disjoint cycles).

1

20 points
2. - Let A be a set, and let $G \leq S_{A}$ be a subgroup of the group of permutations S_{A} of A. For an element $a \in A$, define $G_{a}:=\{\sigma \in G: \sigma(a)=a\}$.
(a) (10 points) For $a \in A$, show that G_{a} is a subgroup of G.
(b) (10 points) Let $a, b \in A$, and suppose there exists $\sigma \in G$ such that $b=\sigma(a)$. Show that G_{a} and G_{b} have the same cardinality.
3. - Consider the dihedral group D_{n}, with $n \geq 3$. Recall the notation we have been using: D_{n} has identity element I, and is generated by elements R and D, satisfying the relations $R^{n}=D^{2}=I$ and $R D=D R^{-1}$. Consider the cyclic subgroup $\left\langle R^{2}\right\rangle$.
(a) (10 points) Show that $\left\langle R^{2}\right\rangle$ is a normal subgroup of D_{n}.
(b) (10 points) Find the order of the group $D_{n} /\left\langle R^{2}\right\rangle$. [Hint: this may depend on the parity of n.]
4. - Recall that for a commutative ring R with unity $1 \neq 0$, we define $R[x]$ to be the ring of polynomials in x with coefficients in R. Consider the map

$$
\begin{gathered}
\phi: \mathbb{Z}[x] \longrightarrow \mathbb{Z}_{4}[x] \\
\sum_{k=0}^{n} a_{k} x^{k} \mapsto \sum_{k=0}^{n}\left[a_{k}\right] x^{k}
\end{gathered}
$$

where $\left[a_{k}\right]=a_{k}(\bmod 4)$.
(a) (10 points) Show that ϕ is a homomorphism of rings.
(b) (10 points) Describe the kernel of ϕ. (Do not just write down the definition; you need to describe an explicit subset of $\mathbb{Z}[x]$.)
5. (20 points) • In a commutative ring with unity, show that $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$.

