Midterm II

Abstract Algebra 1 MATH 3140 Fall 2021

Friday October 29, 2021

NAME: __

PRACTICE EXAM

Question:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Score:						

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- Either write your solutions **directly on this exam** or write the solution to **each problem on a separate piece of paper**.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 50 minutes to complete the exam. Do not forget to leave yourself time (at least 5 minutes) at the end to upload your exam.

1. (a) (5 points) • *Is the permutation* $\sigma = (1, 6, 4)(2, 5) \in S_6$ *even or odd?*

(b) (5 points) *Is the permutation* σ^2 *even or odd?*

(c) (5 points) *Compute* $|\sigma|$; i.e., the order of the element σ in the group S_6 .

(d) (5 points) With σ as above and $\tau = (5,3,2)$, compute $\sigma\tau$ (as a product of disjoint cycles).

1	
20 points	-

- **2.** Let *A* be a set, and let $G \leq S_A$ be a subgroup of the group of permutations S_A of *A*. For an element $a \in A$, define $G_a := \{ \sigma \in G : \sigma(a) = a \}$.
 - (a) (10 points) For $a \in A$, show that G_a is a subgroup of G.

(b) (10 points) Let $a, b \in A$, and suppose there exists $\sigma \in G$ such that $b = \sigma(a)$. Show that G_a and G_b have the same cardinality.

2	
20 points	

- 3. Consider the dihedral group D_n , with $n \ge 3$. Recall the notation we have been using: D_n has identity element *I*, and is generated by elements *R* and *D*, satisfying the relations $R^n = D^2 = I$ and $RD = DR^{-1}$. Consider the cyclic subgroup $\langle R^2 \rangle$.
 - (a) (10 points) Show that $\langle R^2 \rangle$ is a normal subgroup of D_n .

(b) (10 points) *Find the order of the group* $D_n/\langle R^2 \rangle$. [*Hint:* this may depend on the parity of *n*.]

3	
20 points	

4. • Recall that for a commutative ring *R* with unity 1 ≠ 0, we define *R*[*x*] to be the ring of polynomials in *x* with coefficients in *R*. Consider the map

$$\phi: \mathbb{Z}[x] \longrightarrow \mathbb{Z}_4[x]$$
$$\sum_{k=0}^n a_k x^k \mapsto \sum_{k=0}^n [a_k] x^k,$$

where $[a_k] = a_k \pmod{4}$.

(a) (10 points) Show that ϕ is a homomorphism of rings.

(b) (10 points) *Describe the kernel of φ*. (Do not just write down the definition; you need to describe an explicit subset of Z[x].)

4	
20 points	-

5. (20 points) • In a commutative ring with unity, show that $(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.

5 20 points