Midterm I

Abstract Algebra 1 MATH 3140 Fall 2021

Friday September 24, 2021

NAME:		
N A N I E ·		
I N A IVI II.		

PRACTICE EXAM

Question:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Score:						

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- Either write your solutions **directly on this exam** or write the solution to **each problem on a separate** piece of paper.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 50 minutes to complete the exam. Do not forget to leave yourself time (at least 5 minutes) at the end to upload your exam.

1. • Consider the following subset of real 2×2 matrices:

$$H:=\left\{\left(egin{array}{cc} 1 & a \ 0 & 1 \end{array}
ight):a\in\mathbb{R}
ight\}\subseteq \mathrm{M}_2(\mathbb{R}).$$

(a) (10 points) Show that matrix multiplication defines a binary operation on H.

(b) (10 points) *Does the map (or "function")* $\phi: H \to \mathbb{R}$, given by

$$\phi\left(\left(\begin{array}{cc}1&a\\0&1\end{array}\right)\right)=a,$$

give an isomorphism of the binary structure $\langle H, \cdot \rangle$ (here \cdot denotes matrix multiplication) with the binary structure $\langle \mathbb{R}, + \rangle$? Explain.

1

20 points

- **2.** (20 points) Suppose that $\langle G, * \rangle$ is a binary structure such that:
 - 1. The binary operation * is associative.
 - 2. There exists a **left** identity element; i.e., there exists $e \in G$ such that for all $g \in G$, we have e * g = g.
 - 3. **Left** inverses exist; i.e., for all $g \in G$, there exists $g^{-1} \in G$ such that $g^{-1} * g = e$.

Show that $\langle G, * \rangle$ is a group.

2

20 points

3.	(20 points) • Let H be a subgroup of a group G . For $a,b\in G$, let $a\sim b$ if and only if $a^{-1}b$	$\in H$. S	Show
	that \sim is an equivalence relation on G.		
		3	

10 points

(a) (10 points) • In the group \mathbb{Z}_{28} , what is the order of the subgroup generated by th	e element 18?
(b) (10 points) How many generators are there for the group \mathbb{Z}_{28} ?	
(b) (10 points) How many generators are there for the group \mathbb{Z}_{28} ?	
(b) (10 points) How many generators are there for the group \mathbb{Z}_{28} ?	
(b) (10 points) How many generators are there for the group \mathbb{Z}_{28} ?	
(b) (10 points) How many generators are there for the group \mathbb{Z}_{28} ?	
(b) (10 points) How many generators are there for the group \mathbb{Z}_{28} ?	
(b) (10 points) How many generators are there for the group \mathbb{Z}_{28} ?	4
(b) (10 points) How many generators are there for the group \mathbb{Z}_{28} ?	4 20 points

4.

• True or False. For this problem, and this problem only, you do not need to justify your a	inswer.
(a) (4 points) True or False (circle one). Every subgroup of a cyclic group is cyclic.	
(b) (4 points) True or False (circle one). If <i>H</i> and <i>H'</i> are subgroups of a group <i>G</i> , then subgroup of <i>G</i> .	$H \cap H'$ is a
(c) (4 points) True or False (circle one). If $*$ is an associative binary operation on a set S $a,b,c \in S$, we have $(a*b)*c = c*(a*b)$.	, then for all
(d) (4 points) True or False (circle one). Every finite group of at most 3 elements is abelian	n.
(e) (4 points) True or False (circle one). Every subgroup of an infinite group is infinite.	
	5
	20 points

5.