Take-Home Final

Abstract Algebra 1

MATH 3140
Fall 2021
Sunday December 12, 2021

NAME: \qquad

PRACTICE EXAM SOLUTIONS

| Question: | $[\mathbf{1}$ | $\mathbf{2}$ | $[\mathbf{3}$ | $[4$ | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Points: | 25 | 25 | 25 | 25 | 100 |
| Score: | | | | | |

- For the exam you may use only the following resources: our textbook, your lecture notes, my lecture notes, your homework, the pdfs linked from the course webpage:
http://math.colorado.edu/~casa/teaching/21fall/3140/hw.html
and the quizzes and midterms we have taken on Canvas.
- You may not use any other resources whatsoever.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam to Canvas as a single .pdf file with the questions in the correct order.
- The exam is due at 12:00 PM (noon) December 12, 2021.

1. (25 points) • Let G be a group with center $Z(G)$. Show that if $G / Z(G)$ is cyclic, then $Z(G)=G$.
[Hint: Show first there exists $g \in G$ such that for any $g_{1} \in G$, there is a $z_{1} \in Z(G)$ and $n_{1} \in \mathbb{Z}$ such that $g_{1}=g^{n_{1}} z_{1}$. Then show for any $g_{1}, g_{2} \in G$ that $\left.g_{1} g_{2}=g_{2} g_{1}.\right]$

SOLUTION

Solution. It suffices to show that G is abelian (from the definition of the center, it follows immediately that a group G is abelian if and only if $G=Z(G)$). To show G is abelian, we must show that given $g_{1}, g_{2} \in G$, then

$$
g_{1} g_{2}=g_{2} g_{1}
$$

To begin, since the group $G / Z(G)$ is cyclic, it has a generator $g Z(G) \in G / Z(G)$ for some $g \in G$. It follows that there are integers n_{1}, n_{2} such that

$$
g_{1} Z(G)=(g Z(G))^{n_{1}}=g^{n_{1}} Z(G) \text { and } g_{2} Z(G)=(g Z(G))^{n_{2}}=g^{n_{2}} Z(G)
$$

Equivalently, $\left(g^{n_{1}}\right)^{-1} g_{1},\left(g^{n_{2}}\right)^{-1} g_{2} \in Z(G)$. We can rewrite this by saying that there exists $z_{1}, z_{2} \in Z(G)$ such that $\left(g^{n_{1}}\right)^{-1} g_{1}=z_{1}$ and $\left(g^{n_{2}}\right)^{-1} g_{2}=z_{2}$, or rather, $g_{1}=g^{n_{1}} z_{1}$ and $g_{2}=g^{n_{2}} z_{2}$. Then

$$
g_{1} g_{2}=g^{n_{1}} z_{1} g^{n_{2}} z_{2}=g^{n_{2}} z_{2} g^{n_{1}} z_{1}=g_{2} g_{1}
$$

since by definition z_{1}, z_{2} commute with all elements of G, and g commutes with itself.

1 25 points
2. (25 points) - True or False: There exist a ring R with unity $1 \neq 0$, a ring R^{\prime} with unity $1^{\prime} \neq 0^{\prime}$, and homomorphism of rings $\phi: R \rightarrow R^{\prime}$ such that $\phi(1) \neq 0^{\prime}$ and $\phi(1) \neq 1^{\prime}$.

SOLUTION

Solution. True: Let R_{1}, R_{2} be rings with unity not equal to zero. For instance, let $R_{1}=\mathbb{Z}$ and $R_{2}=\mathbb{Z}$. Then the map

$$
\begin{aligned}
\phi & : R_{1} \longrightarrow R_{1} \times R_{2} \\
& r_{1} \mapsto\left(r_{1}, 0_{R_{2}}\right)
\end{aligned}
$$

is a homomorphism of rings. Note that $1_{R_{1} \times R_{2}}=\left(1_{R_{1}}, 1_{R_{2}}\right)$, and $0_{R_{1} \times R_{2}}=\left(0_{R_{1}}, 0_{R_{2}}\right)$. In particular, $\phi\left(1_{R_{1}}\right)=\left(1_{R_{1}}, 0_{R_{2}}\right) \neq 1_{R_{1} \times R_{2}}, 0_{1_{R_{1} \times R_{2}}}$.
3. (25 points) • Let D be an integral domain, and suppose that for every descending chain of ideals in D

$$
\cdots \subseteq I_{4} \subseteq I_{3} \subseteq I_{2} \subseteq I_{1} \subseteq D
$$

there is a positive integer n such that $I_{m}=I_{n}$ for all $m \geq n$. Show that D is a field.

SOLUTION

Solution. Let $0 \neq x \in D$, and consider the chain of ideals

$$
\cdots \subseteq\left(x^{4}\right) \subseteq\left(x^{3}\right) \subseteq\left(x^{2}\right) \subseteq(x) \subseteq D
$$

Then there is some positive integer n such that $\left(x^{n+1}\right)=\left(x^{n}\right)$. In particular, $x^{n} \in\left(x^{n+1}\right)$, so that by definition there exists $y \in D$ such that $x^{n}=y x^{n+1}$. In other words, $x^{n}-y x^{n+1}=0$, or,

$$
(1-y x) x^{n}=0 .
$$

Since we are in an integral domain, and $x \neq 0$, we have that $x^{n} \neq 0$, and finally that $1-y x=0$, so that $y x=1$ and therefore x is a unit. Since we have shown that every nonzero element of D is a unit, we have that D is a field.
4. (25 points) - Show that if F, E, and K are fields with $F \leq E \leq K$, then K is algebraic over F if and only if E is algebraic over F, and K is algebraic over E. (You must not assume the extensions are finite.)

SOLUTION

Solution. This is Fraleigh Exercise 31.31. The solution is available on the course webpage.

