Take-Home Final

Abstract Algebra 1 MATH 3140 Fall 2021

Sunday December 12, 2021

NAME.		
INAME.		

PRACTICE EXAM SOLUTIONS

Question:	1	2	3	4	Total
Points:	25	25	25	25	100
Score:					

• For the exam you may use **only the following resources**: our textbook, your lecture notes, my lecture notes, your homework, the pdfs linked from the course webpage:

http://math.colorado.edu/~casa/teaching/21fall/3140/hw.html and the quizzes and midterms we have taken on Canvas.

- You may not use any other resources whatsoever.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam to Canvas as a single .pdf file with the questions in the correct order.
- The exam is due at 12:00 PM (noon) December 12, 2021.

1. (25 points) • Let G be a group with center Z(G). Show that if G/Z(G) is cyclic, then Z(G) = G.

[*Hint*: Show first there exists $g \in G$ such that for any $g_1 \in G$, there is a $z_1 \in Z(G)$ and $n_1 \in \mathbb{Z}$ such that $g_1 = g^{n_1}z_1$. Then show for any $g_1, g_2 \in G$ that $g_1g_2 = g_2g_1$.]

SOLUTION

Solution. It suffices to show that G is abelian (from the definition of the center, it follows immediately that a group G is abelian if and only if G = Z(G)). To show G is abelian, we must show that given $g_1, g_2 \in G$, then

$$g_1g_2 = g_2g_1$$
.

To begin, since the group G/Z(G) is cyclic, it has a generator $gZ(G) \in G/Z(G)$ for some $g \in G$. It follows that there are integers n_1, n_2 such that

$$g_1Z(G) = (gZ(G))^{n_1} = g^{n_1}Z(G)$$
 and $g_2Z(G) = (gZ(G))^{n_2} = g^{n_2}Z(G)$.

Equivalently, $(g^{n_1})^{-1}g_1$, $(g^{n_2})^{-1}g_2 \in Z(G)$. We can rewrite this by saying that there exists $z_1, z_2 \in Z(G)$ such that $(g^{n_1})^{-1}g_1 = z_1$ and $(g^{n_2})^{-1}g_2 = z_2$, or rather, $g_1 = g^{n_1}z_1$ and $g_2 = g^{n_2}z_2$. Then

$$g_1g_2 = g^{n_1}z_1g^{n_2}z_2 = g^{n_2}z_2g^{n_1}z_1 = g_2g_1$$

since by definition z_1, z_2 commute with all elements of G, and g commutes with itself.

1

25 points

2. (25 points) • **True or False**: There exist a ring R with unity $1 \neq 0$, a ring R' with unity $1' \neq 0'$, and homomorphism of rings $\phi : R \to R'$ such that $\phi(1) \neq 0'$ and $\phi(1) \neq 1'$.

SOLUTION

Solution. **True**: Let R_1 , R_2 be rings with unity not equal to zero. For instance, let $R_1 = \mathbb{Z}$ and $R_2 = \mathbb{Z}$. Then the map

$$\phi: R_1 \longrightarrow R_1 \times R_2$$

$$r_1 \mapsto (r_1, 0_{R_2})$$

is a homomorphism of rings. Note that $1_{R_1 \times R_2} = (1_{R_1}, 1_{R_2})$, and $0_{R_1 \times R_2} = (0_{R_1}, 0_{R_2})$. In particular, $\phi(1_{R_1}) = (1_{R_1}, 0_{R_2}) \neq 1_{R_1 \times R_2}$, $0_{1_{R_1 \times R_2}}$.

2

25 points

3. (25 points) • Let *D* be an integral domain, and suppose that for every descending chain of ideals in *D*

$$\cdots \subseteq I_4 \subseteq I_3 \subseteq I_2 \subseteq I_1 \subseteq D$$

there is a positive integer n such that $I_m = I_n$ for all $m \ge n$. Show that D is a field.

SOLUTION

Solution. Let $0 \neq x \in D$, and consider the chain of ideals

$$\cdots \subseteq (x^4) \subseteq (x^3) \subseteq (x^2) \subseteq (x) \subseteq D$$

Then there is some positive integer n such that $(x^{n+1}) = (x^n)$. In particular, $x^n \in (x^{n+1})$, so that by definition there exists $y \in D$ such that $x^n = yx^{n+1}$. In other words, $x^n - yx^{n+1} = 0$, or,

$$(1 - yx)x^n = 0.$$

Since we are in an integral domain, and $x \neq 0$, we have that $x^n \neq 0$, and finally that 1 - yx = 0, so that yx = 1 and therefore x is a unit. Since we have shown that every nonzero element of D is a unit, we have that D is a field.

3

25 points

4.	(25 points) • Show that if F , E , and K are fields with $F \le E \le K$, then K is algebraic over F if an algebraic over F , and K is algebraic over E . (You must not assume the extensions are finite.)	nd only if E is
	SOLUTION	
	Solution. This is Fraleigh Exercise 31.31. The solution is available on the course webpage.	
		4
		25 points