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1. (25 points) • Show that for a prime p, the polynomial xp + a ∈ Zp[x] is not irreducible for any a ∈ Zp.

SOLUTION

Solution. By Fermat’s Little Theorem (see Fraleigh Corollary 20.2), we know that bp = b for all b ∈ Zp.

Thus−a is a root of xp + a in Zp. It follows from the Factor Theorem (Fraleigh Corollary 23.3) that x + a

is a factor of xp + a. Thus, since p ≥ 2, we have that xp + a is not irreducible for any a ∈ Zp.
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2. (25 points) • Let R be a commutative ring and let I be an ideal of R. The radical of I is the set

√
I := {a ∈ R : an ∈ I for some n ∈ Z+}.

Show that
√

I is an ideal of R.

SOLUTION

Solution. First we will show that
√

I a subgroup of R. The first observation is that 0 ∈ I ⊆
√

I, so that
√

I is nonempty. Now, let a, b ∈
√

I, we will show that (a− b) ∈
√

I. To do this, suppose that a, b ∈
√

I,

so that there are α, β ∈ Z+ such that aα, bβ ∈ I. Let n be an integer such that n ≥ α + β. Then

(a + (−b))n =
n

∑
k=0

(−1)n−k
(

n
k

)
akbn−k ∈ I

since either k ≥ α or n− k ≥ β (otherwise n = k + (n− k) < α + β). In other words, each term in the

sum is in I since ak ∈ I or bn−k ∈ I (use the definition of an ideal), and since I is a subgroup, the sum of

elements of I is in I. Thus
√

I is a subgroup.

To show that it is an ideal, let r ∈ R and a ∈
√

I. Suppose that an ∈ I. Then (ra)n = rnan ∈ I, so that

ra ∈
√

I.
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3. (25 points) • Prove that the algebraic closure of Q in C is not a finite extension of Q.

SOLUTION

Solution. Let Q ⊆ C be the algebraic closure of Q in C. Then for each positive integer n, we have
n
√

2 ∈ Q, since n
√

2 is a root of xn − 2 ∈ Q[x]. Thus for each n we have extensions Q/Q( n
√

2)/Q. If Q

were a finite extension of Q, this would imply that [Q : Q] ≥ [Q( n
√

2) : Q] for every positive integer

n (Fraleigh Theorem 31.4). Using Eisenstein’s Criterion (Fraleigh Theorem 23.15) applied to the prime

p = 2, one has that xn − 2 is irreducible in Q[x], so that [Q( n
√

2) : Q] = n. In other words, if Q were

a finite extension of Q, then we would have [Q : Q] ≥ [Q( n
√

2) : Q] = n for every positive integer n,

which is impossible. Thus Q is not a finite extension of Q.
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4. (25 points) • Find the degree and a basis for the field extension Q(
√

2,
√

3) over Q.

SOLUTION

Solution. The field extension Q(
√

2,
√

3) over Q has degree 4, with a basis given by 1,
√

2,
√

3,
√

6.

We start with the extension Q(
√

2)/Q. By Eisenstein’s Criterion applied to the prime p = 2 (or using

the fact that
√

2 is not rational), we see that x2 − 2 ∈ Q[x] is irreducible, so that the extension Q(
√

2)

over Q has degree 2, with basis given by 1,
√

2 (see Theorem 29.18 or Theorem 30.23 of Fraleigh).

Next I claim that the extension Q(
√

2,
√

3) over Q(
√

2) has degree 2, with basis given by 1,
√

3. To

prove this, it suffices to show (again, see Theorem 29.18 or Theorem 30.23) that x2 − 3 is irreducible

over Q(
√

2). Since this quadratic polynomial can only possibly factor into linear terms, it is equivalent

to show that
√

3 /∈ Q(
√

2) (see Corollary 23.3).

To show
√

3 /∈ Q(
√

2) assume for the sake of contradiction that
√

3 ∈ Q(
√

2). Then since 1,
√

2 give a

basis for Q(
√

2) over Q, we could write
√

3 = a
b +

c
d

√
2 with a, b, c, d ∈ Z, and b, d 6= 0. Clearly c 6= 0,

since otherwise
√

3 would be rational, which we know is not the case. On the other hand, I claim that

a 6= 0, either. Otherwise, squaring both sides we would have 3 = c2

d2 2, or, rearranging, 3d2 = 2c2; but the

left hand side has an even number of factors of 2, while the right hand side has an odd number of factors

of 2, giving a contradiction. Thus we may assume a, c 6= 0. Squaring both sides of
√

3 = a
b +

c
d

√
2 gives

3 =
(

a2

b2 +
2c2

d2

)
+ 2 ac

bd

√
2, but since a, c are assumed not to be zero, it would follow that

√
2 is rational

(solve for
√

2), giving a contradiction. Thus
√

3 /∈ Q(
√

2), completing the proof of the claim that the

extension Q(
√

2,
√

3) over Q(
√

2) has degree 2, with basis given by 1,
√

3.

For the degree of the extension Q(
√

2,
√

3)/Q, we then conclude (Theorem 31.4) that

[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)][Q(
√

2) : Q] = 2 · 2 = 4,

as claimed.

For a basis of Q(
√

2,
√

3)/Q, we can use the elements 1 · 1, 1 ·
√

3,
√

2 · 1,
√

2 ·
√

3 (see the proof of

Theorem 31.4; we are taking the product of each element of the basis for Q(
√

2)/Q with each element

of the basis for Q(
√

2,
√

3)/Q(
√

2)). In other words, a basis for the field extension Q(
√

2,
√

3) over Q is

1,
√

2,
√

3,
√

6, as claimed.
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