In-Class Final

Abstract Algebra 1

MATH 3140
Fall 2021
Sunday December 12, 2021

NAME: \qquad

PRACTICE EXAM SOLUTIONS

| Question: | $\mathbf{1}$ | $\mathbf{2}$ | $[\mathbf{3}$ | $4 \mathbf{4}$ | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Points: | 25 | 25 | 25 | 25 | 100 |
| Score: | | | | | |

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam to Canvas as a single .pdf file with the questions in the correct order.
- You have 60 minutes to complete the exam.

1. (25 points) • Show that for a prime p, the polynomial $x^{p}+a \in \mathbb{Z}_{p}[x]$ is not irreducible for any $a \in \mathbb{Z}_{p}$.

SOLUTION

Solution. By Fermat's Little Theorem (see Fraleigh Corollary 20.2), we know that $b^{p}=b$ for all $b \in \mathbb{Z}_{p}$. Thus $-a$ is a root of $x^{p}+a$ in \mathbb{Z}_{p}. It follows from the Factor Theorem (Fraleigh Corollary 23.3) that $x+a$ is a factor of $x^{p}+a$. Thus, since $p \geq 2$, we have that $x^{p}+a$ is not irreducible for any $a \in \mathbb{Z}_{p}$.
2. (25 points) • Let R be a commutative ring and let I be an ideal of R. The radical of I is the set

$$
\sqrt{I}:=\left\{a \in R: a^{n} \in I \text { for some } n \in \mathbb{Z}^{+}\right\} .
$$

Show that \sqrt{I} is an ideal of R.

SOLUTION

Solution. First we will show that \sqrt{I} a subgroup of R. The first observation is that $0 \in I \subseteq \sqrt{I}$, so that \sqrt{I} is nonempty. Now, let $a, b \in \sqrt{I}$, we will show that $(a-b) \in \sqrt{I}$. To do this, suppose that $a, b \in \sqrt{I}$, so that there are $\alpha, \beta \in \mathbb{Z}^{+}$such that $a^{\alpha}, b^{\beta} \in I$. Let n be an integer such that $n \geq \alpha+\beta$. Then

$$
(a+(-b))^{n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} a^{k} b^{n-k} \in I
$$

since either $k \geq \alpha$ or $n-k \geq \beta$ (otherwise $n=k+(n-k)<\alpha+\beta$). In other words, each term in the sum is in I since $a^{k} \in I$ or $b^{n-k} \in I$ (use the definition of an ideal), and since I is a subgroup, the sum of elements of I is in I. Thus \sqrt{I} is a subgroup.

To show that it is an ideal, let $r \in R$ and $a \in \sqrt{I}$. Suppose that $a^{n} \in I$. Then $(r a)^{n}=r^{n} a^{n} \in I$, so that $r a \in \sqrt{I}$.
3. (25 points) • Prove that the algebraic closure of \mathbb{Q} in \mathbb{C} is not a finite extension of \mathbb{Q}.

SOLUTION

Solution. Let $\overline{\mathbb{Q}} \subseteq \mathbb{C}$ be the algebraic closure of \mathbb{Q} in \mathbb{C}. Then for each positive integer n, we have $\sqrt[n]{2} \in \overline{\mathbb{Q}}$, since $\sqrt[n]{2}$ is a root of $x^{n}-2 \in \mathbb{Q}[x]$. Thus for each n we have extensions $\overline{\mathbb{Q}} / \mathbb{Q}(\sqrt[n]{2}) / \mathbb{Q}$. If $\overline{\mathbb{Q}}$ were a finite extension of \mathbf{Q}, this would imply that $[\overline{\mathbb{Q}}: \mathbb{Q}] \geq[\mathbb{Q}(\sqrt[n]{2})$: $\mathbb{Q}]$ for every positive integer n (Fraleigh Theorem 31.4). Using Eisenstein's Criterion (Fraleigh Theorem 23.15) applied to the prime $p=2$, one has that $x^{n}-2$ is irreducible in $\mathbb{Q}[x]$, so that $[\mathbb{Q}(\sqrt[n]{2}): \mathbb{Q}]=n$. In other words, if $\overline{\mathbb{Q}}$ were a finite extension of \mathbb{Q}, then we would have $[\overline{\mathbb{Q}}: \mathbb{Q}] \geq[\mathbb{Q}(\sqrt[n]{2}): \mathbb{Q}]=n$ for every positive integer n, which is impossible. Thus $\overline{\mathbb{Q}}$ is not a finite extension of \mathbb{Q}.
4. (25 points) • Find the degree and a basis for the field extension $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q}.

SOLUTION

Solution. The field extension $Q(\sqrt{2}, \sqrt{3})$ over Q has degree 4 , with a basis given by $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$.
We start with the extension $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$. By Eisenstein's Criterion applied to the prime $p=2$ (or using the fact that $\sqrt{2}$ is not rational), we see that $x^{2}-2 \in \mathbb{Q}[x]$ is irreducible, so that the extension $\mathbb{Q}(\sqrt{2})$ over Q has degree 2, with basis given by $1, \sqrt{2}$ (see Theorem 29.18 or Theorem 30.23 of Fraleigh).

Next I claim that the extension $Q(\sqrt{2}, \sqrt{3})$ over $Q(\sqrt{2})$ has degree 2 , with basis given by $1, \sqrt{3}$. To prove this, it suffices to show (again, see Theorem 29.18 or Theorem 30.23) that $x^{2}-3$ is irreducible over $Q(\sqrt{2})$. Since this quadratic polynomial can only possibly factor into linear terms, it is equivalent to show that $\sqrt{3} \notin \mathrm{Q}(\sqrt{2})$ (see Corollary 23.3).

To show $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$ assume for the sake of contradiction that $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$. Then since $1, \sqrt{2}$ give a basis for $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q}, we could write $\sqrt{3}=\frac{a}{b}+\frac{c}{d} \sqrt{2}$ with $a, b, c, d \in \mathbb{Z}$, and $b, d \neq 0$. Clearly $c \neq 0$, since otherwise $\sqrt{3}$ would be rational, which we know is not the case. On the other hand, I claim that $a \neq 0$, either. Otherwise, squaring both sides we would have $3=\frac{c^{2}}{d^{2}} 2$, or, rearranging, $3 d^{2}=2 c^{2}$; but the left hand side has an even number of factors of 2 , while the right hand side has an odd number of factors of 2 , giving a contradiction. Thus we may assume $a, c \neq 0$. Squaring both sides of $\sqrt{3}=\frac{a}{b}+\frac{c}{d} \sqrt{2}$ gives $3=\left(\frac{a^{2}}{b^{2}}+\frac{2 c^{2}}{d^{2}}\right)+2 \frac{a c}{b d} \sqrt{2}$, but since a, c are assumed not to be zero, it would follow that $\sqrt{2}$ is rational (solve for $\sqrt{2}$), giving a contradiction. Thus $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$, completing the proof of the claim that the extension $Q(\sqrt{2}, \sqrt{3})$ over $Q(\sqrt{2})$ has degree 2 , with basis given by $1, \sqrt{3}$.

For the degree of the extension $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$, we then conclude (Theorem 31.4) that

$$
[Q(\sqrt{2}, \sqrt{3}): Q]=[Q(\sqrt{2}, \sqrt{3}): Q(\sqrt{2})][Q(\sqrt{2}): Q]=2 \cdot 2=4
$$

as claimed.
For a basis of $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$, we can use the elements $1 \cdot 1,1 \cdot \sqrt{3}, \sqrt{2} \cdot 1, \sqrt{2} \cdot \sqrt{3}$ (see the proof of Theorem 31.4; we are taking the product of each element of the basis for $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ with each element of the basis for $Q(\sqrt{2}, \sqrt{3}) / \mathbb{Q}(\sqrt{2})$). In other words, a basis for the field extension $Q(\sqrt{2}, \sqrt{3})$ over Q is $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$, as claimed.

