In-Class Final

Abstract Algebra 1 MATH 3140 Fall 2021

Sunday December 12, 2021

NAME: _

PRACTICE EXAM

Question:	1	2	3	4	Total
Points:	25	25	25	25	100
Score:					

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam to **Canvas** as a **single .pdf** file with the questions in the correct order.
- You have 60 minutes to complete the exam.

1. (25 points) • Show that for a prime p, the polynomial $x^p + a \in \mathbb{Z}_p[x]$ is not irreducible for any $a \in \mathbb{Z}_p$.

1	
25 points	

2. (25 points) • Let *R* be a commutative ring and let *I* be an ideal of *R*. The *radical of I* is the set

$$\sqrt{I} := \{a \in R : a^n \in I \text{ for some } n \in \mathbb{Z}^+\}.$$

Show that \sqrt{I} is an ideal of R.

2
25 points

3. (25 points) • *Prove that the algebraic closure of* \mathbb{Q} *in* \mathbb{C} *is not a finite extension of* \mathbb{Q} *.*

3
25 points

4. (25 points) • *Find the degree and a basis for the field extension* $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ *over* \mathbb{Q} .

4
25 points