In-Class Final

Abstract Algebra 1

MATH 3140
Fall 2021
Sunday December 12, 2021

NAME: \qquad

PRACTICE EXAM

Question:	$\mathbf{1}$	2	2	3	4	Total
Points:	25	25	25	25	100	
Score:						

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam to Canvas as a single .pdf file with the questions in the correct order.
- You have 60 minutes to complete the exam.

1. (25 points) • Show that for a prime p, the polynomial $x^{p}+a \in \mathbb{Z}_{p}[x]$ is not irreducible for any $a \in \mathbb{Z}_{p}$.
2. (25 points) • Let R be a commutative ring and let I be an ideal of R. The radical of I is the set

$$
\sqrt{I}:=\left\{a \in R: a^{n} \in I \text { for some } n \in \mathbb{Z}^{+}\right\} .
$$

Show that \sqrt{I} is an ideal of R.
3. (25 points) • Prove that the algebraic closure of \mathbb{Q} in \mathbb{C} is not a finite extension of \mathbb{Q}.
4. (25 points) • Find the degree and a basis for the field extension $Q(\sqrt{2}, \sqrt{3})$ over Q.

