Exercise A. 14

Abstract Algebra 1
 MATH 3140

SEBASTIAN CASALAINA

Abstract. This is Exercise A. 14 from Fraleigh [Fra03, Appendix: Matrix Algebra]:

Exercise A.14. Prove that if $A, B \in \mathrm{M}_{n}(\mathbb{C})$ are invertible, then $A B$ and $B A$ are invertible also.
Solution. Suppose that $A, B \in \mathrm{M}_{n}(\mathbb{C})$ are invertible. Then $(A B)\left(B^{-1} A^{-1}\right)=A B B^{-1} A^{-1}=A I A^{-1}=$ $A A^{-1}=I$, and similarly, $\left(B^{-1} A^{-1}\right)(A B)=B^{-1} B=I$, so that $A B$ is invertible. We also have $(B A)\left(A^{-1} B^{-1}\right)=B B^{-1}=I$ and $\left(A^{-1} B^{-1}\right)(B A)=A^{-1} A=I$, so that $B A$ is invertible.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

