Exercise 9.33

Abstract Algebra 1
 MATH 3140

SEBASTIAN CASALAINA

Abstract. This is Exercise 9.33 from Fraleigh [Fra03, §9]:

Exercise 9.33. Consider S_{n} for a fixed $n \geq 2$, and let σ be a fixed odd permutation. Show that every odd permutation in S_{n} is a product of σ and some permutation in A_{n}.

Solution. Let σ^{\prime} be an odd permutation in S_{n}. We must show that there exists an even permutation $\mu \in A_{n}$ such that $\sigma^{\prime}=\sigma \mu$. Indeed, we may take $\mu=\sigma^{-1} \sigma^{\prime}$, since, as the product of two odd permutations, it is an even permutation (see below), and $\sigma^{\prime}=\sigma\left(\sigma^{-1} \sigma^{\prime}\right)=\sigma \mu$.

For completeness, let's prove directly the assertion above that $\sigma^{-1} \sigma^{\prime}$ is even. From the definition of an odd permutation, there exist a finite number of transpositions $\tau_{1}, \ldots, \tau_{m}$ for some odd $m \in \mathbb{N}$ such that

$$
\sigma=\tau_{1} \ldots \tau_{m}
$$

Similarly, since σ^{\prime} is also an odd permutation, there exist a finite number of transpositions $\tau_{1}^{\prime}, \ldots, \tau_{\ell}^{\prime}$ for some odd $\ell \in \mathbb{N}$ such that $\sigma^{\prime}=\tau_{1}^{\prime} \ldots \tau_{\ell}^{\prime}$. Consider now the permutation

$$
\mu=\sigma^{-1} \sigma^{\prime}
$$

I claim that this lies in A_{n}. Indeed we have

$$
\mu=\sigma^{-1} \sigma^{\prime}=\underbrace{\tau_{m} \ldots \tau_{1} \tau_{1}^{\prime} \ldots \tau_{\ell}^{\prime}}_{m+\ell} .
$$

The sum of two odd numbers is even, and so it follows that this is an even permutation.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

