Exercise 8.30

Abstract Algebra 1
 MATH 3140

SEBASTIAN CASALAINA

Abstract. This is Exercise 8.30 from Fraleigh [Fra03, §8]:

Exercise 8.30. Determine whether the map ("function")

$$
f_{1}: \mathbb{R} \rightarrow \mathbb{R}
$$

defined by $f_{1}(x)=x+1$ is a permutation of \mathbb{R}.
Solution. The map ("function") $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{1}(x)=x+1$ is a permutation of \mathbb{R}; i.e., f_{1} is a bijection (it is "both one-to-one and onto"). We have seen that this is equivalent to showing that f_{1} has an inverse map ("function"); i.e., a map ("function") $f_{1}^{-1}: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}$ we have $f_{1}^{-1}\left(f_{1}(x)\right)=x$ and $f_{1}\left(f_{1}^{-1}(x)\right)=x$.

I claim the inverse map ("function") f_{1}^{-1} is given by $f_{1}^{-1}(x)=x-1$. To see this we have

$$
\left(f_{1}^{-1} \circ f_{1}\right)(x)=f_{1}^{-1}(x+1)=(x+1)-1=x
$$

Similarly, we have

$$
\left(f_{1} \circ f_{1}^{-1}\right)(x)=f_{1}(x-1)=(x-1)+1=x .
$$

Remark 0.1. We can also show that f_{1} is a bijection (it is "both one-to-one and onto") directly. Indeed, f_{1} is injective ("one-to-one") since if $f_{1}(a)=f_{1}(b)$, then $a+1=b+1$, implying that $a=b$. And f_{1} is surjective ("onto") since if $a \in \mathbb{R}$, then $f_{1}(a-1)=a$.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

