Exercise on the order of an element in a group

Abstract Algebra 1
MATH 3140

SEBASTIAN CASALAINA

Abstract. This is an Exercise on the order of an element in a group from Fraleigh [Fra03, §6]:

In [Fra03, p.59], Fraleigh defines the order of an element of a group: Given a group G and an element $a \in G$, if the order of the cyclic subgroup $\langle a\rangle$ of G is finite, then the order of a is defined to be $|\langle a\rangle|$; i.e., the number of elements in the cyclic subgroup of G generated by a. Otherwise, the order of a is said to be infinite. A common notation for the order of an element a in a group G is $|a|$; unfortunately, this notation is not used in Fraleigh.

In [Fra03, p.59], Fraleigh states without proof that if $a \in G$ is of finite order m, then m is the smallest positive integer such that $a^{m}=e$. One can deduce this from what is in the rest of [Fra03, §6], but I want to explain this here.

Exercise on the order of an element in a group. Suppose G is a group. Show that $a \in G$ is of finite order if and only if there exists a positive natural number n such that $a^{n}=e$. Moreover, show that for an element $a \in G$ of finite order, the order of a is equal to m if and only if m is the smallest positive integer such that $a^{m}=e$.

Solution. Suppose first that a is of finite order m; i.e., $|\langle a\rangle|=m$. Then from [Fra03, Theorem 6.10], there is an isomorphism of groups

$$
\begin{gathered}
\phi: \mathbb{Z}_{m} \longrightarrow\langle a\rangle \\
s \mapsto a^{s}
\end{gathered}
$$

Using this, we have that $a^{m}=\phi(1)^{m}=\phi(\underbrace{1+\cdots+1}_{m \text { times }})=\phi(0)=a^{0}=e$, where in the second equality we are using the fact that ϕ is an isomorphism of binary structures. In particular, we see that there exists a positive natural number m such that $a^{m}=e$. Moreover, m is the smallest such
positive number, since if there were a positive integer r with $0<r<m$ such that $a^{r}=e$, then $\phi(0)=a^{0}=e=a^{r}=\phi(r)$, contradicting the injectivity of ϕ.

Conversely, suppose that there exists a positive integer n such that $a^{n}=e$. Then let m be the smallest positive integer such that $a^{m}=e$. I claim that the order of a is finite and equal to m; i.e., $|\langle a\rangle|=m$. Indeed, I claim first that the containment

$$
\left\{e, a, a^{2}, \ldots, a^{m-1}\right\} \subseteq\langle a\rangle=\left\{a^{n}: n \in \mathbb{Z}\right\}
$$

is an equality. To show this, we just need to show that given $n \in \mathbb{Z}$, we have $a^{n}=a^{r}$ for some $0 \leq r<m$. For this, we can use the division algorithm to find integers r, q such that

$$
n=q m+r, \quad 0 \leq r<m .
$$

Then $a^{n}=a^{q m+r}=a^{q m} a^{r}=\left(a^{m}\right)^{q} a^{r}=e^{q} a^{r}=a^{r}$, which is what we needed to prove. Thus $\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{m-1}\right\}$.

Finally, I claim that $\left|\left\{e, a, a^{2}, \ldots, a^{m-1}\right\}\right|=m$. Indeed, if $a^{i}=a^{j}$ for some $0 \leq i \leq j<m$, then we have $e=a^{j} a^{-i}=a^{j-i}$. Since $0 \leq j-i<m$, and m is the smallest positive integer such that $a^{m}=e$, it must be that $j-i=0$, or, in other words, $i=j$. Thus $|\langle a\rangle|=\left|\left\{e, a, a^{2}, \ldots, a^{m-1}\right\}\right|=m$.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

