Exercise 4.4

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 4.4 from Fraleigh [Fra03, §4]:

Exercise 4.4. Let * be defined on \mathbb{Q} by letting a * b = ab. Determine whether the binary structure $\langle \mathbb{Q}, * \rangle$ is a group. If it is not a group, give the first condition (or "group axiom") $\mathscr{G}_1, \mathscr{G}_2$, or \mathscr{G}_3 , from [Fra03, Definition 4.1] that does not hold.

Solution. The binary structure $\langle \mathbb{Q}, * \rangle$ is not a group; the first condition (or "group axiom") that does not hold is \mathscr{G}_3 . Indeed while * is associative, i.e., \mathscr{G}_1 holds (multiplication of rational numbers is associative), and $1 \in \mathbb{Q}$ is an identity element for the binary structure $\langle \mathbb{Q}, * \rangle$, i.e., \mathscr{G}_2 holds (for all $a \in \mathbb{Q}$ we have 1 * a = a * 1 = a), the element $0 \in \mathbb{Q}$ does not have an inverse, i.e., \mathscr{G}_3 fails (there is no element $a \in \mathbb{Q}$ such that a * 0 = 0 * a = 1).

Remark 0.1. Note that letting $\mathbb{Q}^* = \mathbb{Q} - \{0\}$ be the non-zero rational numbers, and letting * be defined on \mathbb{Q}^* by letting a * b = ab, we have that $\langle \mathbb{Q}^*, * \rangle$ *is* a group.

Date: September 12, 2021.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu