Exercise 3.26

Abstract Algebra 1
 MATH 3140

SEBASTIAN CASALAINA

Abstract. This is Exercise 3.26 from Fraleigh [Fra03, §3]:

Exercise 3.26. Recall that if $f: A \rightarrow B$ is a one-to-one function mapping A onto B (bijective map), then the element $f^{-1}(b)$ is the unique element $a \in A$ such that $f(a)=b$. Prove that if $\phi: S \rightarrow S^{\prime}$ is an isomorphism of $\langle S, *\rangle$ with $\left\langle S^{\prime}, *^{\prime}\right\rangle$, then ϕ^{-1} is an isomorphism of $\left\langle S^{\prime}, *^{\prime}\right\rangle$ with $\langle S, *\rangle$.

For this exercise, we will want to use the following basic fact about inverse maps (functions):
Lemma 0.1. Let A and B be sets, and let $f: A \rightarrow B$ be a map (function). Then f is bijective (one-to-one and onto) if and only if there exists a map (function) $f^{-1}: B \rightarrow A$ such that for all $a \in A$ we have $f^{-1}(f(a))=a$, and for all $b \in B$ we have $f\left(f^{-1}(b)\right)=b$.

Proof. This is a fact you should know from MATH 2001, and it would be a good exercise, to check that you recall the material from that class, to prove this lemma. Recall that f^{-1} is called the inverse map (function) of f.

Solution to Exercise 3.26. Let $\langle S, *\rangle$ and $\left\langle S^{\prime}, *^{\prime}\right\rangle$ be binary structures, and let $\phi: S \rightarrow S^{\prime}$ be an isomorphism of $\langle S, *\rangle$ with $\left\langle S^{\prime}, *^{\prime}\right\rangle$. By definition (see [Fra03, Def. 3.7, p.29]), $\phi: S \rightarrow S^{\prime}$ is a bijective map (one-to-one function mapping S onto S^{\prime}), such that for all $x, y \in S$:

$$
\phi(x * y)=\phi(x) *^{\prime} \phi(y) .
$$

As indicated in the statement of the problem (i.e., using Lemma 0.1), since ϕ is a bijective map (one-to-one and onto function), ϕ has an inverse

$$
\phi^{-1}: S^{\prime} \longrightarrow S
$$

Note that in particular, for any $z^{\prime} \in S^{\prime}$, we have (see Lemma 0.1)

$$
\begin{equation*}
\phi\left(\phi^{-1}\left(z^{\prime}\right)\right)=z^{\prime} . \tag{0.1}
\end{equation*}
$$

The problem asks us to show that $\phi^{-1}: S^{\prime} \rightarrow S$ is an isomorphism of $\left\langle S^{\prime}, *^{\prime}\right\rangle$ with $\langle S, *\rangle$. In other words, it asks us to show that $\phi^{-1}: S^{\prime} \rightarrow S$ is a bijective map (one-to-one function mapping S^{\prime} onto S), such that for all $x^{\prime}, y^{\prime} \in S^{\prime}$:

$$
\phi^{-1}\left(x^{\prime} *^{\prime} y^{\prime}\right)=\phi^{-1}\left(x^{\prime}\right) * \phi^{-1}\left(y^{\prime}\right)
$$

We already know that $\phi^{-1}: S^{\prime} \rightarrow S$ is a bijective map (one-to-one function mapping S^{\prime} onto S) (for instance, apply Lemma 0.1 to $\phi^{-1}: S^{\prime} \rightarrow S$, and use ϕ to arrive at the implication (\Longleftarrow) of the lemma). So all that remains is to check that for all $x^{\prime}, y^{\prime} \in S^{\prime}$:

$$
\begin{equation*}
\phi^{-1}\left(x^{\prime} *^{\prime} y^{\prime}\right)=\phi^{-1}\left(x^{\prime}\right) * \phi^{-1}\left(y^{\prime}\right) \tag{0.2}
\end{equation*}
$$

So, let $x^{\prime}, y^{\prime} \in S^{\prime}$. Since ϕ is injective (one-to-one), in order to show that (0.2) holds, it suffices to show that

$$
\begin{equation*}
\phi\left(\phi^{-1}\left(x^{\prime} *^{\prime} y^{\prime}\right)\right)=\phi\left(\phi^{-1}\left(x^{\prime}\right) * \phi^{-1}\left(y^{\prime}\right)\right) . \tag{0.3}
\end{equation*}
$$

For this, considering first the left hand side, and then the right hand side, we have that

$$
\begin{array}{rlrl}
\phi\left(\phi^{-1}\left(x^{\prime} *^{\prime} y^{\prime}\right)\right) & =x^{\prime} *^{\prime} y^{\prime} & & ((0.1), \text { or Lemma 0.1) } \\
\phi\left(\phi^{-1}\left(x^{\prime}\right) * \phi^{-1}\left(y^{\prime}\right)\right) & =\phi\left(\phi^{-1}\left(x^{\prime}\right)\right) *^{\prime} \phi\left(\phi^{-1}\left(y^{\prime}\right)\right) \\
& =x^{\prime} *^{\prime} y^{\prime} & & (\phi \text { is an isomorphism }) \\
((0.1), \text { or Lemma 0.1 })
\end{array}
$$

Thus, both sides of (0.3) are equal, and so we have shown that ϕ^{-1} is an isomorphism of $\left\langle S^{\prime}, *^{\prime}\right\rangle$ with $\langle S, *\rangle$.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

