Exercise 30.4

Abstract Algebra 1
 MATH 3140

SEBASTIAN CASALAINA

Abstract. This is Exercise 30.4 from Fraleigh [Fra03, §30]:

Exercise 30.4. Give a basis for the vector space $Q(\sqrt{2})$ over Q.
Solution. A basis for $Q(\sqrt{2})$ over Q is given by $\{1, \sqrt{2}\}$. This follows from [Fra03, Theorem 30.23]. Indeed, I claim that $\operatorname{irr}(\sqrt{2}, Q)=x^{2}-2$. Certainly $\sqrt{2}$ is a root of $x^{2}-2$, and one can see that $x^{2}-2$ is irreducible, since if it factored, it would factor into linear terms, and then there would be a rational square root of 2 , which we know is not the case. Thus $\operatorname{deg}(\sqrt{2}, Q)=2$, and [Fra03, Theorem 30.23] implies that $\{1, \sqrt{2}\}$ is a basis.

Remark 0.1. Here is a direct argument for the exercise, which recapitulates the proof of [Fra03, Theorem 30.23] in the situation of this exercise. From [Fra03, Case I, p.270], we know that the evaluation homomorphism $\phi_{\sqrt{2}}$ gives an isomorphism of $\mathbb{Q}[x] /\langle\operatorname{irr}(\sqrt{2}, \mathbb{Q})\rangle$ with $\mathbb{Q}(\sqrt{2})$. Therefore, since $\operatorname{irr}(\sqrt{2}, \mathrm{Q})=x^{2}-2$ (as explained above), the evaluation homomorphism $\phi_{\sqrt{2}}$ gives an isomorphism

$$
\begin{equation*}
\frac{\mathrm{Q}[x]}{\left\langle x^{2}-2\right\rangle} \xrightarrow{\sim} \mathbf{Q}(\sqrt{2}) . \tag{0.1}
\end{equation*}
$$

Now I claim the classes of 1 and x form a basis for $\mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle$. First, the classes of 1 and x span $\mathrm{Q}[x] /\left\langle x^{2}-2\right\rangle$, since the class of any polynomial $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots$ is equal to the class of $a_{0}+a_{1} x+2 a_{2}+2 a_{3} x+2^{2} a_{4}+\cdots=\left(a_{0}+2 a_{2}+2^{2} a_{4}+\cdots\right) \cdot 1+\left(a_{1}+2 a_{3}+2^{2} a_{5}+\cdots\right) \cdot x$.

Second, the classes of 1 and x are linearly independent in $\mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle$, since if there were a linear relation $a \cdot 1+b \cdot x=0$ in $\mathrm{Q}[x] /\left\langle x^{2}-2\right\rangle$, then $a+b x$ would be in the kernel of the evaluation map $\phi_{\sqrt{2}}: \mathbb{Q}[x] \rightarrow \mathbb{Q}(\sqrt{2})$, contradicting the fact that $\operatorname{irr}(\sqrt{2}, \mathbb{Q})$ is the monic polynomial of minimal degree in the kernel of the evaluation map.

Since the classes of 1 and x form a basis for $\mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle$, their images under the isomorphism (0.1) form a basis for $Q(\sqrt{2})$. Their images are 1 and $\sqrt{2}$ respectively, and so 1 and $\sqrt{2}$ form a basis for $Q(\sqrt{2})$.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

