Exercise 2.2

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 2.2 from Fraleigh [Fra03, §2]:

Exercise 2.2. The binary operation * is defined on $S = \{a, b, c, d\}$ by means of the table [Fra03, 2.26 Table, p.26]:

*	a	b	С	d	e
а	а	b	С	b	d
b	b	С	а	е	С
С	c	а	b	b	а
d	b	e	b	e	d
e	e	b	а	d	С

Compute (a * b) * c and a * (b * c). Can you say on the basis of this computation whether * is associative?

Solution. We have

$$(a*b)*c = b*c$$

$$= a$$

$$a*(b*c) = a*a$$

$$= a$$

While (a*b)*c = a*(b*c), we cannot determine based only on this computation whether * is associative. For that, we must check whether *for all* $x,y,z \in S$ we have (x*y)*z = x*(y*z); we have only checked this for x = a, y = b, and z = c.

Remark 0.1. Note that, in fact, * is *not* associative. Indeed, we have for instance

$$(d*d)*e = e*d$$

$$= d$$

$$d*(d*e) = d*d$$

$$= e$$

Since $(d*d)*e \neq d*(d*e)$, we have that * is not associative.

REFERENCES

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309 Email address: casa@math.colorado.edu