Exercise 2.2

Abstract Algebra 1
 MATH 3140

SEBASTIAN CASALAINA

Abstract. This is Exercise 2.2 from Fraleigh [Fra03, §2]:

Exercise 2.2. The binary operation $*$ is defined on $S=\{a, b, c, d\}$ by means of the table [Fra03, 2.26 Table, p.26]:

$*$	a	b	c	d	e
a	a	b	c	b	d
b	b	c	a	e	c
c	c	a	b	b	a
d	b	e	b	e	d
e	e	b	a	d	c

Compute $(a * b) * c$ and $a *(b * c)$. Can you say on the basis of this computation whether $*$ is associative?

Solution. We have

$$
\begin{aligned}
(a * b) * c & =b * c \\
& =a \\
a *(b * c) & =a * a \\
& =a
\end{aligned}
$$

While $(a * b) * c=a *(b * c)$, we cannot determine based only on this computation whether $*$ is associative. For that, we must check whether for all $x, y, z \in S$ we have $(x * y) * z=x *(y * z)$; we have only checked this for $x=a, y=b$, and $z=c$.

Remark 0.1. Note that, in fact, $*$ is not associative. Indeed, we have for instance

$$
\begin{aligned}
(d * d) * e & =e * d \\
& =d \\
d *(d * e) & =d * d \\
& =e
\end{aligned}
$$

Since $(d * d) * e \neq d *(d * e)$, we have that $*$ is not associative.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

