Exercise 29.33

Abstract Algebra 1
 MATH 3140

SEBASTIAN CASALAINA

Abstract. This is Exercise 29.33 from Fraleigh [Fra03, §29]:

Exercise 29.33. Let E be an extension of a field F and let $\alpha \in E$ be transcendental over F. Show that every element of $F(\alpha)$ that is not in F is also transcendental over F.

Solution. Denote by $F(x)$ the field of fractions ("quotients") of the polynomial ring $F[x]$. From [Fra03, Case II, p.270], since α is transcendental over F, the evaluation homomorphism $\phi_{a}: F[x] \rightarrow$ E induces an isomorphism

$$
\phi_{a}: F(x) \xrightarrow{\sim} F(\alpha) .
$$

In other words, it suffices to show that if $\frac{p(x)}{q(x)} \in F(x)$ (for some $p(x), q(x) \in F[x]$ with $q(x) \neq 0$) is algebraic over F, then $\frac{p(x)}{q(x)}$ is contained in F (i.e., is a ratio of constant polynomials).

Note that using [Fra03, Theorem 23.20], we may factor $p(x)$ and $q(x)$ into irreducibles, and therefore, cancelling irreducible factors, we may and will assume that $p(x)$ and $q(x)$ have no common irreducible factors.

Now let us assume that $\frac{p(x)}{q(x)}$ is algebraic over F; i.e., it satisfies a monic polynomial

$$
\begin{equation*}
T^{n}+a_{n-1} T^{n-1}+\cdots+a_{1} T+a_{0} \in F[T] . \tag{0.1}
\end{equation*}
$$

In other words, assume

$$
\left(\frac{p(x)}{q(x)}\right)^{n}+a_{n-1}\left(\frac{p(x)}{q(x)}\right)^{n-1}+\cdots+a_{1}\left(\frac{p(x)}{q(x)}\right)+a_{0}=0 .
$$

Multiplying by $q(x)^{n}$, we have

$$
p(x)^{n}+a_{n-1} p(x)^{n-1} q(x)+\cdots+a_{1} p(x) q(x)^{n-1}+a_{0} q(x)^{n}=0,
$$

which we may rewrite as

$$
p(x)^{n}=-\left(a_{n-1} p(x)^{n-1} q(x)+\cdots+a_{1} p(x) q(x)^{n-1}+a_{0} q(x)^{n}\right) .
$$

Since the right hand side is divisible by $q(x)$, the left hand side must also be divisible by $q(x)$. But we have assumed that $p(x)$ and $q(x)$ have no common irreducible factors, so it must be that $q(x)$ is a nonzero constant (i.e., in F^{*}). In other words, $g(x):=p(x) / q(x) \in F[x]$ is a polynomial, which satisfies the monic polynomial (0.1), above.

We want to show $g(x) \in F$. If $g(x)=0$, then clearly $g(x) \in F$, so let us assume that $g(x) \neq 0$. Then we can write

$$
g(x)=b_{e} x^{e}+\cdots+b_{1} x+b_{0}, \quad b_{e} \neq 0
$$

for some nonnegative integer e. We want to show that $e=0$. For the sake of contradiction, assume that $e \neq 0$. Then substituting into (0.1) we have

$$
\begin{aligned}
0 & =\left(b_{e} x^{e}+\cdots+b_{1} x+b_{0}\right)^{n}+a_{n-1}\left(b_{e} x^{e}+\cdots+b_{1} x+b_{0}\right)^{n-1}+\cdots+a_{0} \\
& =b_{e}^{n} x^{n e}+\text { lower order terms in } x .
\end{aligned}
$$

This is not possible, since $b_{e} \neq 0$, and therefore our assumption that $e \neq 0$ was false. Thus $e=0$, and $g(x)$ is a constant.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

