Exercise 22.24

Abstract Algebra 1
 MATH 3140

SEBASTIAN CASALAINA

AbStract. This is Exercise 22.24 from Fraleigh [Fra03, §22]:

Exercise 22.24. Prove that if D is an integral domain, then $D[x]$ is an integral domain.
Solution. If D is an integral domain, then $D[x]$ is a commutative ring with unity $1 \neq 0$, and so to prove that $D[x]$ is an integral domain, we must show that $D[x]$ has no divisors of 0 .

In other words, if $0 \neq f(x), g(x) \in D[x]$, we must show that $f(x) g(x) \neq 0$. To this end, if $f(x) \neq 0$, then we may write $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in D[x]$ with $a_{d} \neq 0$, and similarly, if $g(x) \neq 0$, then we may write $g(x)=b_{0}+b_{1} x+\cdots+b_{e} x^{e} \in D[x]$ with $b_{e} \neq 0$. We then have

$$
\begin{aligned}
f(x) g(x) & =\left(a_{0}+a_{1} x+\cdots+a_{d} x^{d}\right)\left(b_{0}+b_{1} x+\cdots+b_{e} x^{e}\right) \\
& =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\cdots+a_{d} b_{e} x^{d+e} .
\end{aligned}
$$

Now since a_{d} and b_{d} are nonzero, and D is an integral domain, we have that $a_{d} b_{e} \neq 0$, so that $f(x) g(x) \neq 0$. Thus $D[x]$ is an integral domain.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

