Exercise 1.17

Abstract Algebra 1
 MATH 3140

SEBASTIAN CASALAINA

Abstract. This is Exercise 1.17 from Fraleigh [Fra03, §1]:

Exercise 1.17. Find all solutions in C of the equation $z^{4}=-1$.
Solution. First observe that $\zeta=e^{i \pi / 4}$ is a solution to the equation $z^{4}=-1$, since $\zeta^{4}=\left(e^{i \pi / 4}\right)^{4}=$ $e^{i \pi}=\cos \pi+i \sin \pi=-1+0=-1$. One can check that $\zeta, i \zeta,-\zeta,-i \zeta$ are also solutions, and are not equal to one another (e.g., $(-i \zeta)^{4}=(-i)^{4} \zeta^{4}=1 \cdot(-1)=-1$). By the Fundamental Theorem of Algebra, the equation $z^{4}=-1$ has at most four solutions, and so we are done.

Remark 0.1. One can also solve the problem as follows. Since $1=|-1|=\left|z^{4}\right|=|z|^{4}$, we know that $|z|=1$, so that any solution of the equation $z^{4}=-1$ will be of the form $z=e^{i \theta}$. Then we have $z^{4}=\left(e^{i \theta}\right)^{4}=e^{i 4 \theta}$, and this must equal $-1=e^{i \pi}$, so that putting this together we have $4 \theta=\pi+2 \pi n(n \in \mathbb{Z})$. Thus $\theta=\frac{\pi}{4}+\frac{\pi}{2} n(n \in \mathbb{Z})$. In other words

$$
\theta \in\left\{\ldots, \frac{\pi}{4}, \frac{\pi}{4}+\frac{\pi}{2}, \frac{\pi}{4}+\pi, \frac{\pi}{4}+\frac{3 \pi}{2}, \frac{\pi}{4}+2 \pi, \cdots\right\}
$$

Since $e^{i \theta}=e^{i(\theta+2 \pi)}$, and $e^{i \pi / 2}=i$, we see the solutions are $z=e^{i \pi / 4}, i e^{i \pi / 4},-e^{i \pi / 4},-i e^{i \pi / 4}$.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

