Exercise 18.42

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 18.42 from Fraleigh [Fra03, §18]:

Exercise 18.42. Show that the unity element in a subfield of a field must be the unity element of the whole field (in contrast to Exercise 18.32 for rings in general).

A field is an integral domain, and since the statement holds for integral domains as well, and our proof extends easily, we will prove this more general fact:

Let D' be an integral domain, and let $D \subseteq D'$ be a subring that is also an integral domain. Let 1_D to be the unity element of D and let $1'_D$ be the unity element of D'. Then $1_D = 1_{D'}$.

Proof. We recall now for later reference that $0_D = 0_{D'}$ (since the identity element of a subgroup is the identity element of the group).

Now let $a \in D$ be any non-zero element (such an element exists since $1_D \neq 0_D$ by the definition of an integral domain). We have in *D* that

$$a \cdot 1_D = a$$

Multiplication in *D* is induced by that of D', and so this equality also holds in D'. Similarly, in D' we have

$$a\cdot 1_{D'}=a$$

so that

Date: August 8, 2021.

If D' were a field, then we could multiply by $a^{-1} \in D'$ (the multiplicative inverse of a in D')¹ and obtain that $1_D = 1'_D$. On the other hand, if D' is not a field, then a may not have a multiplicative inverse in D', and this argument would not work.

Exercise 18.42

However, whether or not D' is a field, (0.1) still implies that

$$a \cdot (1_D - 1_{D'}) = 0_{D'}.$$

Then, since we are assuming D' is an integral domain, and by assumption $a \neq 0_D (= 0_{D'})$, it follows that

$$1_D - 1_{D'} = 0_{D'}$$

Thus we have shown $1_D = 1_{D'}$.

In fact, we can even prove the following more general statement:

Let R' *be a ring with no zero divisors, and let* $R \subseteq R'$ *be a subring with unity* $1_R \neq 0_R$. *Then* 1_R *is a unity element for* R'.

For an even more general statement, you can see Exercise 26.21.

Solution. Let R' be a ring with no zero divisors, and let $R \subseteq R'$ be a subring with unity $1_R \neq 0_R$. We will show 1_R is a unity element for R'.

We want to show that for all $r' \in R'$, we have

$$(0.2) 1_R \cdot r' = r'.$$

This is equivalent to showing

$$(0.3) 1_R \cdot r' - r' = 0,$$

which, since $1_R \neq 0'$ and R' has no zero divisors, is equivalent to showing

(0.4)
$$1_R(1_R \cdot r' - r') = 0.$$

¹Note that for this argument, we need to use that *a* has a multiplicative inverse in *D*' (even if *D* and *D*' are fields, we do not yet know that the multiplicative inverse of *a* in *D* agrees with the multiplicative inverse of *a* in *D*'; we have not yet proven that). In fact, the example $\mathbb{Z}_2 \times \{0\} \subseteq \mathbb{Z}_2 \times \mathbb{Z}_2$ shows that it is not enough to only assume that *D* is a field.

In other words, to show that 1_R is unity for R', it suffices to show that (0.4) holds for all $r' \in R$. We now prove this:

$$\begin{aligned} \mathbf{1}_{R}(\mathbf{1}_{R}\cdot r'-r') &= \mathbf{1}_{R}\cdot \mathbf{1}_{R}\cdot r'-\mathbf{1}_{R}r'\\ &= \mathbf{1}_{R}\cdot r'-\mathbf{1}_{R}r'\\ &= \mathbf{0}. \end{aligned}$$

This completes the proof.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu