Exercise 18.42

Abstract Algebra 1
 MATH 3140

SEBASTIAN CASALAINA

Abstract. This is Exercise 18.42 from Fraleigh [Fra03, §18]:

Exercise 18.42. Show that the unity element in a subfield of a field must be the unity element of the whole field (in contrast to Exercise 18.32 for rings in general).

A field is an integral domain, and since the statement holds for integral domains as well, and our proof extends easily, we will prove this more general fact:

Let D^{\prime} be an integral domain, and let $D \subseteq D^{\prime}$ be a subring that is also an integral domain.
Let 1_{D} to be the unity element of D and let 1_{D}^{\prime} be the unity element of D^{\prime}. Then $1_{D}=1_{D^{\prime}}$.

Proof. We recall now for later reference that $0_{D}=0_{D^{\prime}}$ (since the identity element of a subgroup is the identity element of the group).

Now let $a \in D$ be any non-zero element (such an element exists since $1_{D} \neq 0_{D}$ by the definition of an integral domain). We have in D that

$$
a \cdot 1_{D}=a .
$$

Multiplication in D is induced by that of D^{\prime}, and so this equality also holds in D^{\prime}. Similarly, in D^{\prime} we have

$$
a \cdot 1_{D^{\prime}}=a
$$

so that

$$
\begin{equation*}
a \cdot 1_{D}=a \cdot 1_{D^{\prime}} . \tag{0.1}
\end{equation*}
$$

If D^{\prime} were a field, then we could multiply by $a^{-1} \in D^{\prime}$ (the multiplicative inverse of a in $\left.D^{\prime}\right)^{1}$ and obtain that $1_{D}=1_{D}^{\prime}$. On the other hand, if D^{\prime} is not a field, then a may not have a multiplicative inverse in D^{\prime}, and this argument would not work.

However, whether or not D^{\prime} is a field, (0.1) still implies that

$$
a \cdot\left(1_{D}-1_{D^{\prime}}\right)=0_{D^{\prime}} .
$$

Then, since we are assuming D^{\prime} is an integral domain, and by assumption $a \neq 0_{D}\left(=0_{D^{\prime}}\right)$, it follows that

$$
1_{D}-1_{D^{\prime}}=0_{D^{\prime}} .
$$

Thus we have shown $1_{D}=1_{D^{\prime}}$.

In fact, we can even prove the following more general statement:
Let R^{\prime} be a ring with no zero divisors, and let $R \subseteq R^{\prime}$ be a subring with unity $1_{R} \neq 0_{R}$.
Then 1_{R} is a unity element for R^{\prime}.
For an even more general statement, you can see Exercise 26.21.

Solution. Let R^{\prime} be a ring with no zero divisors, and let $R \subseteq R^{\prime}$ be a subring with unity $1_{R} \neq 0_{R}$. We will show 1_{R} is a unity element for R^{\prime}.

We want to show that for all $r^{\prime} \in R^{\prime}$, we have

$$
\begin{equation*}
1_{R} \cdot r^{\prime}=r^{\prime} \tag{0.2}
\end{equation*}
$$

This is equivalent to showing

$$
\begin{equation*}
1_{R} \cdot r^{\prime}-r^{\prime}=0, \tag{0.3}
\end{equation*}
$$

which, since $1_{R} \neq 0^{\prime}$ and R^{\prime} has no zero divisors, is equivalent to showing

$$
\begin{equation*}
1_{R}\left(1_{R} \cdot r^{\prime}-r^{\prime}\right)=0 . \tag{0.4}
\end{equation*}
$$

[^0]In other words, to show that 1_{R} is unity for R^{\prime}, it suffices to show that (0.4) holds for all $r^{\prime} \in R$. We now prove this:

$$
\begin{aligned}
1_{R}\left(1_{R} \cdot r^{\prime}-r^{\prime}\right) & =1_{R} \cdot 1_{R} \cdot r^{\prime}-1_{R} r^{\prime} \\
& =1_{R} \cdot r^{\prime}-1_{R} r^{\prime} \\
& =0 .
\end{aligned}
$$

This completes the proof.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

[^0]: ${ }^{1}$ Note that for this argument, we need to use that a has a multiplicative inverse in D^{\prime} (even if D and D^{\prime} are fields, we do not yet know that the multiplicative inverse of a in D agrees with the multiplicative inverse of a in D^{\prime}; we have not yet proven that). In fact, the example $\mathbb{Z}_{2} \times\{0\} \subseteq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ shows that it is not enough to only assume that D is a field.

