Exercise 11.47

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

Abstract. This is Exercise 11.47 from Fraleigh [Fra03, §11]:

Exercise 11.47. Let G be an abelian group. Let H be the subset of G consisting of the identity e together with all elements of order 2 . Show that H is a subgroup of G.

Solution. Let G be an abelian group. Let H be the subset of G consisting of the identity e together with all elements of order 2 . To show that H is a subgroup, it suffices to show that H is nonempty, and for all $a, b \in H$, one has $a b^{-1} \in H$. Since $e \in H$, we have that H is nonempty. So let $a, b \in H$. Then

$$
\left(a b^{-1}\right)\left(a b^{-1}\right)=a b^{-1} a b^{-1}=a a b^{-1} b^{-1}=a a(b b)^{-1}=e e=e .
$$

Thus $a b^{-1} \in H$.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

