Exercise 10.3

Abstract Algebra 1
 MATH 3140

SEBASTIAN CASALAINA

Abstract. This is Exercise 10.3 from Fraleigh [Fra03, §10]:

Exercise 10.3. Find all cosets of the subgroup $\langle 2\rangle$ of \mathbb{Z}_{12}.
Solution. There are two cosets of the subgroup $\langle 2\rangle$ of \mathbb{Z}_{12}, namely,

$$
\langle 2\rangle \text { and } 1+\langle 2\rangle \text {. }
$$

To see this, observe that

$$
\begin{aligned}
& 0+\langle 2\rangle=\langle 2\rangle=\{0,2,4,6,8,10\} . \\
& 1+\langle 2\rangle=\{1,3,5,7,9,11\} .
\end{aligned}
$$

These left cosets are distinct. By Lagrange's theorem, the number of left cosets of $\langle 2\rangle$ in \mathbb{Z}_{12} is given by:

$$
\left(\mathbb{Z}_{12}:\langle 2\rangle\right)=\left|\mathbb{Z}_{12}\right| /|\langle 2\rangle|=12 / 6=2
$$

so $\langle 2\rangle$ and $1+\langle 2\rangle$ are the left only cosets. Since the group \mathbb{Z}_{12} is abelian, every left coset is also a right coset, and so these are all the cosets.

Remark 0.1. Alternatively, we can conclude that $0+\langle 2\rangle$ and $1+\langle 2\rangle$ are the only two cosets by observing that every element of \mathbb{Z}_{12} is contained in one of these two left cosets, and again, since \mathbb{Z}_{12} is abelian, every left coset is also a right coset.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

