Exercise 0.30

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 0.30 from Fraleigh [Fra03, §0]:

Exercise 0.30. Determine whether the relation

$$x \mathscr{R} y$$
 in \mathbb{R} if $x \ge y$

is an equivalence relation on \mathbb{R} . If so, describe the partition arising from the equivalence relation.

Note that as a set, the relation is defined as:

$$\mathscr{R} = \{(x, y) \in \mathbb{R}^2 : x \ge y\} \subseteq \mathbb{R}^2.$$

Solution. The relation \mathscr{R} is not an equivalence relation since it does not satisfy the symmetric property. For instance,

2*R*1,

but it is *not* true that $1\mathscr{R}2$. In other words, $(2,1) \in \mathscr{R}$ since $2 \ge 1$, but $(1,2) \notin \mathscr{R}$ since $1 \ge 2$. \Box

Remark 0.1. Note that \mathscr{R} *does* satisfy the reflexive and transitive properties. Indeed, if $x \in \mathbb{R}$, then $(x, x) \in \mathscr{R}$ (i.e., $x \ge x$), so that \mathscr{R} satisfies the reflexive property. And if $x, y, z \in \mathbb{R}$, with $(x, y) \in \mathscr{R}$ (i.e., $x \ge y$) and $(y, z) \in \mathscr{R}$ (i.e., $y \ge z$), then $(x, z) \in \mathscr{R}$ (i.e., $x \ge z$), so that \mathscr{R} satisfies the transitive property.

Date: August 29, 2021.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu