Exercise 0.18

Abstract Algebra 1
 MATH 3140

SEBASTIAN CASALAINA

Abstract. This is Exercise 0.18 from Fraleigh [Fra03, §0]:

Exercise 0.18. For any set A, finite or infinite, let B^{A} be the set of all functions mapping A into the set $B=\{0,1\}$ (maps from A to $B=\{0,1\}$). Show that the cardinality of B^{A} is the same as the cardinality of the set $\mathscr{P}(A)$. [Hint: Each element of B^{A} determines a subset of A in a natural way.] Solution. To show that the cardinality of B^{A} is the same as the cardinality of the set $\mathscr{P}(A)$, we need to construct a bijective map (one-to-one and onto function)

$$
\phi: B^{A} \longrightarrow \mathscr{P}(A) .
$$

We define ϕ as follows. Given a map (function) $f: A \rightarrow\{0,1\}$, we define

$$
\phi(f):=\{a \in A: f(a)=1\} \subseteq A .
$$

Now we must show it is bijective (one-to-one and onto). First let us show it is injective (one-toone). So suppose that $f, g \in B^{A}$, and $\phi(f)=\phi(g)$. In other words,

$$
\phi(f)=\{a \in A: f(a)=1\}=\phi(g)=\{a \in A: g(a)=1\} .
$$

Since any map (function) $A \rightarrow\{0,1\}$ is determined by the elements of a that it sends to 1 (it must send the remaining elements to 0), we see that $f=g$. Thus ϕ is injective (one-to-one).

Now let us show that ϕ is surjective (onto). Let $S \subseteq A$. Then let $1_{S}: A \rightarrow\{0,1\}$ be the map (function) defined by

$$
1_{S}(a)= \begin{cases}1, & a \in S \\ 0, & a \notin S\end{cases}
$$

Then $\phi\left(1_{S}\right)=S$, and therefore ϕ is surjective (onto).

Remark 0.1. As an alternate approach, to show that ϕ is bijective (one-to-one and onto), it suffices to construct an inverse map (function)

$$
\psi: \mathscr{P}(A) \longrightarrow B^{A} ;
$$

i.e., a map (function) ψ as above such that for all $f \in B^{A}$ we have $\psi(\phi(f))=f$, and for all $S \subseteq A$ we have $\phi(\psi(S))=S$. We construct ψ as follows. Given a subset $S \subseteq A$, we define $\psi(S): A \rightarrow\{0,1\}$ by the rule

$$
\psi(S)(a)= \begin{cases}1, & a \in S \\ 0, & a \notin S\end{cases}
$$

You can check that ψ is an inverse map (function) for ϕ. (You can also see that the map (function)
1_{S} in the solution above is equal to the map (function) $\psi(S)$.)

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

