Exercise 0.18

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 0.18 from Fraleigh [Fra03, §0]:

Exercise 0.18. For any set *A*, finite or infinite, let B^A be the set of all functions mapping *A* into the set $B = \{0,1\}$ (maps from *A* to $B = \{0,1\}$). Show that the cardinality of B^A is the same as the cardinality of the set $\mathcal{P}(A)$. [Hint: Each element of B^A determines a subset of *A* in a natural way.] *Solution.* To show that the cardinality of B^A is the same as the cardinality of the set $\mathcal{P}(A)$, we need to construct a bijective map (one-to-one and onto function)

$$\phi: B^A \longrightarrow \mathscr{P}(A)$$

We define ϕ as follows. Given a map (function) $f : A \to \{0, 1\}$, we define

$$\phi(f) := \{a \in A : f(a) = 1\} \subseteq A.$$

Now we must show it is bijective (one-to-one and onto). First let us show it is injective (one-to-one). So suppose that $f, g \in B^A$, and $\phi(f) = \phi(g)$. In other words,

$$\phi(f) = \{a \in A : f(a) = 1\} = \phi(g) = \{a \in A : g(a) = 1\}.$$

Since any map (function) $A \rightarrow \{0,1\}$ is determined by the elements of *a* that it sends to 1 (it must send the remaining elements to 0), we see that f = g. Thus ϕ is injective (one-to-one).

Now let us show that ϕ is surjective (onto). Let $S \subseteq A$. Then let $1_S : A \to \{0,1\}$ be the map (function) defined by

$$1_S(a) = \begin{cases} 1, & a \in S \\ 0, & a \notin S. \end{cases}$$

Then $\phi(1_S) = S$, and therefore ϕ is surjective (onto). *Date:* September 3, 2021.

1

Remark 0.1. As an alternate approach, to show that ϕ is bijective (one-to-one and onto), it suffices to construct an inverse map (function)

$$\psi:\mathscr{P}(A)\longrightarrow B^{A};$$

i.e., a map (function) ψ as above such that for all $f \in B^A$ we have $\psi(\phi(f)) = f$, and for all $S \subseteq A$ we have $\phi(\psi(S)) = S$. We construct ψ as follows. Given a subset $S \subseteq A$, we define $\psi(S) : A \to \{0, 1\}$ by the rule

$$\psi(S)(a) = \begin{cases} 1, & a \in S \\ 0, & a \notin S. \end{cases}$$

You can check that ψ is an inverse map (function) for ϕ . (You can also see that the map (function) 1_S in the solution above is equal to the map (function) $\psi(S)$.)

2

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu