
HOMEWORK EXAMPLE

JANE DOE

1. Exercises 9

Exercise 1 (# 9.33). Consider Sn for a fixed n ≥ 2, and let σ be a
fixed odd permutation. The problem asks us to show that every odd
permutation in Sn is a product of σ and some permutation in An.

Proof. Let σ′ be an odd permutation in Sn. We must show that there
exists an even permutation µ ∈ An such that σ′ = σµ. Indeed, we may
take µ = σ−1σ′, since as the product of two odd permutations, it is an
even permutation, and

σ′ = σ(σ−1σ′).

�

For completeness, let’s prove directly that σ−1σ′ is even. From the
definition of an odd permutation, there exist a finite number of trans-
positions τ1, . . . , τm for some odd m ∈ N such that

σ = τ1 . . . τm.

Similarly, since σ′ is also an odd permutation, there exist a finite
number of transpositions τ ′1, . . . , τ

′
` for some odd ` ∈ N such that

σ′ = τ ′1 . . . τ
′
`. Consider now the permutation

µ = σ−1σ′.

I claim that this lies in An. Indeed we have

µ = σ−1σ′ = τm . . . τ1τ
′
1 . . . τ

′
`︸ ︷︷ ︸

m+`

.

The sum of two odd numbers is even, and so it follows that this is an
even permutation.
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