HOMEWORK REVIEW
 FRIDAY JUNE 12

MATH 3140

SEBASTIAN CASALAINA

AbStract. Here are solutions to the following problems:

- Fraleigh [Fra03] Excercises 5 Problem 46
- Fraleigh [Fra03] Excercises 6 Problem 50
- Fraleigh [Fra03] Excercises 8 Problem 30
- Fraleigh [Fra03] Excercises 9 Problem 18
- Fraleigh [Fra03] Excercises 10 Problem 3
- Fraleigh [Fra03] Excercises 10 Problem 40

EXERCISES 5

Exercises 5: Problem 46. Prove that a cyclic group with only one generator can have at most 2 elements.

Solution to Exercises 5: Problem 46. For any cyclic group $G=\langle g\rangle$, we have that both g and g^{-1} are generators. These are distinct if and only if $|G| \geq 3$.

EXERCISES 6

Exercises 6: Problem 50. Let G be a group and suppose $a \in G$ generates a cyclic subgroup of order 2 and is the unique such element. Show that $a x=x a$ for all $x \in G$. [Hint: Consider $\left(x a x^{-1}\right)^{2}$.]

Solution to Exercises 6: Problem 50. Let G be a group and suppose $a \in G$ generates a cyclic subgroup of order 2 and is the unique such element. Let $x \in G$. We will show $x a=a x$.

To do this consider the element $\left(x a x^{-1}\right)^{2}$. We have

$$
\begin{array}{rlrl}
\left(x a x^{-1}\right)^{2} & =\left(x a x^{-1}\right)\left(x a x^{-1}\right) & \\
& =x a\left(x^{-1} x\right) a x^{-1} & & \\
& =x a a x^{-1} & & \\
& =x x^{-1} & & \\
& =e & |\langle a\rangle|=2 \Longrightarrow a^{2}=e \\
& &
\end{array}
$$

Since a is the unique element of G that generates a cyclic subgroup of order 2, we must have

$$
x a x^{-1}=e \text { or } x a x^{-1}=a .
$$

In the first case, multiplying by x on the right, we have $x a=x$, then then multiplying by x^{-1} on the left, we have $a=e$, which is not possible since a generates a subgroup of order 2 .

In the second case, multiplying by x on the right gives us that

$$
x a=a x
$$

EXERCISES 8

Exercises 8: Problem 30. Determine whether the function

$$
f_{1}: \mathbb{R} \rightarrow \mathbb{R}
$$

defined by $f_{1}(x)=x+1$ is a permutation of \mathbb{R}.
Solution to Exercises 8: Problem 30. The function

$$
f_{1}: \mathbb{R} \rightarrow \mathbb{R}
$$

defined by $f_{1}(x)=x+1$ is a permutation of \mathbb{R}. In fact, I claim the inverse function f_{1}^{-1} is given by $f_{1}^{-1}(x)=x-1$. To see this we have

$$
\left(f_{1}^{-1} \circ f_{1}\right)(x)=f_{1}^{-1}(x+1)=(x+1)-1=x
$$

Similarly, we have

$$
\left(f_{1} \circ f_{1}^{-1}\right)(x)=f_{1}(x-1)=(x-1)+1=x
$$

In other words, $f_{1}^{-1} \circ f_{1}=f_{1} \circ f_{1}^{-1}=\operatorname{Id}_{\mathbb{R}}$.

EXERCISES 9

Exercises 9: Problem 18. Find the maximum possible order for an element of S_{15}.

Solution to Exercises 9: Problem 18. We claim that the maximum possible order for an element of S_{15} is 105 .

To see this recall that any element $\sigma \in S_{15}$ can be written as a product of disjoint cycles. If $\sigma_{1}, \ldots, \sigma_{r}$ are disjoint cycles, then $\left|\sigma_{1} \cdots \sigma_{r}\right|=$ $\operatorname{lcm}\left(\left|\sigma_{1}\right|, \ldots,\left|\sigma_{r}\right|\right)$. In addition, any element $\sigma \in S_{15}$ of maximum possible order can be written as a product of disjoint cycles $\sigma_{1} \cdots \sigma_{r}$ where

$$
\sum_{i=1}^{r}\left|\sigma_{i}\right|=15
$$

In other words, among all partitions $\left(d_{1}, \ldots, d_{r}\right)$ of 15 (i.e., natural numbers $1 \leq d_{1} \leq \cdots \leq d_{r} \leq 15$ with $\sum_{i=1}^{r} d_{i}=15$), we want to know what is the maximum of $\operatorname{lcm}\left(d_{1}, \ldots, d_{r}\right)$.

We claim that the maximum is 105 , corresponding to the partition $(3,5,7)$, which for instance would correspond to the element

$$
\sigma=(1,2,3)(4,5,6,7,8)(9,10,11,12,13,14,15) \in S_{15}
$$

We will argue by considering the maximal element of the partition, d_{r}. For instance, if $d_{r}=15$, then the partition is (15), and then the least common multiple is 15 . If $d_{r}=14$, then the partition is $(1,14)$ and then the least common multiple is 14 . If $d_{r}=13$,
then the partition is either $(2,13)$ or $(1,1,13)$, and then the maximum of the least common multiples is 26 . If $d_{r}=12$, then the partition is $(3,12)$, or $(1,2,12)$, or $(1,1,1,12)$, and the maximum of the least common multiples is 12 . If $d_{r}=11$, then we have $(4,11)$, or $(1,3,11)$, or $(1,1,2,11)$, or $(1,1,1,1,11)$, in which case the maximum is 44 . If $d_{r}=10$, then we have $(5,10)$, or $(1,4,10)$, or $(2,3,10)$, or $(1,1,3,10)$, or, $(1,1,1,2,10)$, or $(1,1,1,1,10)$, in which case the maximum is 30 . If $d_{r}=9$, then we have $(6,9)$, or $(1,5,9)$, or $(2,4,9)$, or $(1,1,4,9)$, or $(1,2,3,9)$, or $(1,1,1,3,9)$, or $(2,2,2,9)$, or $(1,1,2,2,9)$, or $(1,1,1,1,2,9)$, or $(1,1,1,1,1,1,9)$, in which case the maximum is 45. Arguing similarly for $d_{r}=8,7,6,5,4,3,2,1$, gives the assertion.

EXERCISES 10

Exercises 10: Problem 3. Find all cosets of the subgroup $\langle 2\rangle$ of \mathbb{Z}_{12}.
Solution to Exercises 10: Problem 3. There are two cosets of the subgroup $\langle 2\rangle$ of \mathbb{Z}_{12}, namely,

$$
\langle 2\rangle \text { and } 1+\langle 2\rangle .
$$

To see this, observe that

$$
\begin{aligned}
& 0+\langle 2\rangle=\langle 2\rangle=\{0,2,4,6,8,10\} . \\
& 1+\langle 2\rangle=\{1,3,5,7,9,11\} .
\end{aligned}
$$

These cosets are distinct, and by Lagrange's theorem,

$$
\left|\mathbb{Z}_{12} /\langle 2\rangle\right|=12 / 6=2
$$

so $\langle 2\rangle$ and $1+\langle 2\rangle$ are the only cosets.

Exercises 10: Problem 40. Let G be a finite group of order n with identity e. Show that for any $a \in G$, we have $a^{n}=e$.

Solution to Exercises 10: Problem 40. Let G be a finite group. Recall that Lagrange's theorem says that for any subgroup $H \leq G$, we have

$$
|G / H|=|G| /|H| .
$$

In particular, the order of H divides the order of G. Recall that I am using the notation G / H to denote the set of left cosets of H in G.

Recall that given a group G with identity e, and an element $a \in G$, the order of a, written $|a|$, is the smallest natural number n such that $a^{n}=e$.

Corollary 0.1 (Corollary to Lagrange's theorem). If G is a finite group, and $a \in G$, then $|a|$ divides $|G|$.

Proof. Let G be a finite group. Let $a \in G$. Let $H=\langle a\rangle$. We have $|a|=|\langle a\rangle|=|H|$. Since $|H|$ divides $|G|$, it follows that $|a|$ divides $|G|$.

With this, we can answer the problem. Let G be a finite group of order n with identity e. Let $a \in G$. We will show $a^{n}=e$. Let $r=|a|$. We know from the corollary above that $r \mid n$; i.e., $n=r s$ for some natural number s. From this we have

$$
a^{n}=a^{r s}=\left(a^{r}\right)^{s}=e^{s}=e .
$$

REFERENCES

[Fra03] John B. Fraleigh, A first course in abstract algebra, 7 ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 2003.

University of Colorado, Department of Mathematics, Campus Box 395, BOULDER, CO 80309-0395

Email address: casa@math.colorado.edu

