
CAYLEY’S THEOREM

SEBASTIAN CASALAINA

1. The statement of Cayley’s Theorem

For a set S, we will denote by (Bij(S), ◦) the group of bijections f : S → S under
composition.

Theorem 1.1 (Cayley’s Theorem). Let (G, ·) be a group. There is an injective group ho-
momorphism

Φ : (G, ·) −→ (Bij(G), ◦)

defined by the rule that for all g, h ∈ G, we have Φ(g)(h) = gh.

We will prove Cayley’s Theorem below. Before we do that, we mention here that Cayley’s
Theorem is often stated for finite groups in the following form:

Corollary 1.2. Let G be a finite group of order n. Then G is isomorphic to a subgroup of
Sn, the symmetric group on n letters.

Proof. Cayley’s Theorem gives an injective homomorphism of groups Φ : G ↪→ Bij(G).
Then since there is a bijection of sets G → {1, . . . , n}, we have an isomorphism of groups
Ψ : Bij(G)→ Bij({1, . . . , n}) =: Sn. �

2. The group of bijections of a set

Given a set S, we recall that (Bij(S), ◦), the set of bijections f : S → S under composition,
form a group. Namely, we have a map

◦ : Bij(S)× Bij(S)→ Bij(S)

(f, g) 7→ f ◦ g.

The identity element of Bij(S) is IdS, since

IdS ◦f = f

for all f ∈ Bij(S). If f ∈ Bij(S), then the inverse element of f under the group law is given
by the inverse map f−1, since

f−1 ◦ f = IdS .

Composition of maps is associative. Thus (Bij(S), ◦) is a group.
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3. Proof of Cayley’s Theorem

Given a group G, there is a map of sets

Φ : G→ Map(G,G)

Φ(g)(h) = gh, for all g, h ∈ G.
Part of the assertion of Cayley’s Theorem is that Im(Φ) ⊆ Bij(G,G) ⊆ Map(G,G). In other
words, given g ∈ G, the claim is that the map Φ(g) : G → G is a bijection. To show that
Φ(g) is a bijection, we need to show that it is injective and surjective.

First let us show that if g ∈ G, then Φ(g) is injective. This means, that given h1, h2 ∈ G,
then if Φ(g)(h1) = Φ(g)(h2), we need to show that h1 = h2. Well,

gh1 =: Φ(g)(h1) = Φ(g)(h2) := gh2.

Then composing with g−1 on the left, we have that

h1 = g−1gh1 = g−1gh2 = h2.

Thus Φ(g) is injective.
Let us now show that Φ(g) is surjective. This means that given h ∈ G, we need to exhibit

h′ ∈ G such that Φ(g)(h′) = h. Well, given h ∈ G, if we set h′ = g−1h, then

h = gh′ = Φ(g)(h′).

Thus Φ(g) is surjective. We have now succeeded in showing that if g ∈ G, then Φ(g) ∈
Bij(G,G).

The next claim of Cayley’s Theorem is that

Φ : G→ Bij(G,G)

is a group homomorphism. In other words, given g1, g2 ∈ G, the claim is that

Φ(g1g2) = Φ(g1) ◦ Φ(g2).

It is enough to check this holds when the maps are applied to each h ∈ G. In other words,
for h ∈ G, we have

Φ(g1g2)(h) := (g1g2)h = g1(g2h) = (Φ(g1) ◦ Φ(g2))(h).

Thus Φ(g1g2) = Φ(g1) ◦ Φ(g2).
The last claim of Cayley’s Theorem is that Φ is injective. In other words, given g1, g2 ∈ G,

if Φ(g1) = Φ(g2), then the claim is that g1 = g2. To prove this, apply Φ(g1) and Φ(g2) to the
identity element of G:

g1 = Φ(g1)(e) = Φ(g2)(e) = g2.

This shows that Φ is injective, and completes the proof of Cayley’s Theorem.

4. The example of the dihedral group

Recall the dihedral group:

E:DihE:Dih (4.1) Dn = {Id, R, . . . , Rn−1, D,DR, . . . , DRn−1},
where we compose under the rules that Rn = Id, D2 = Id, and DR = Rn−1D. Then Cayley’s
Theorem tells us there is an injective group homomorphism

Φ : Dn −→ Bij(Dn) ∼= S2n.
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We can tell that Φ is not surjective (for n > 1) by counting elements (the order of Dn is 2n,
whereas the order of S2n is (2n)!).

Exercise 4.1. If we label the elements of Dn from 1, . . . , 2n, in the order given above in
(4.1), what is the permuation associated to R; i.e., under the induced isomorphism Ψ :
Bij(Dn)→ S2n, what is the element Ψ ◦ Φ(R)?

Exercise 4.2. Can you find an injective homomorphism φ : Dn −→ Sn? Are any of the
homomorphisms you find surjective?
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