CAYLEY’S THEOREM

SEBASTIAN CASALAINA

1. THE STATEMENT OF CAYLEY’S THEOREM

For a set S, we will denote by (Bij(S),0) the group of bijections f : S — S under
composition.

Theorem 1.1 (Cayley’s Theorem). Let (G,-) be a group. There is an injective group ho-
momorphism

defined by the rule that for all g,h € G, we have ®(g)(h) = gh.

We will prove Cayley’s Theorem below. Before we do that, we mention here that Cayley’s
Theorem is often stated for finite groups in the following form:

Corollary 1.2. Let G be a finite group of order n. Then G is isomorphic to a subgroup of
Sn, the symmetric group on n letters.

Proof. Cayley’s Theorem gives an injective homomorphism of groups ® : G — Bij(G).

Then since there is a bijection of sets G — {1,...,n}, we have an isomorphism of groups
U : Bij(G) — Bij({1,...,n}) =: S,. O

2. THE GROUP OF BIJECTIONS OF A SET

Given a set S, we recall that (Bij(.S), o), the set of bijections f : S — S under composition,
form a group. Namely, we have a map

o : Bij(9) x Bij(S) — Bij(9)

(f;9) = fog.
The identity element of Bij(S) is Idg, since
Idgof = f

for all f € Bij(5). If f € Bij(.9), then the inverse element of f under the group law is given
by the inverse map f~!, since

f o f=1ds.

Composition of maps is associative. Thus (Bij(5), o) is a group.
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3. PrROOF OoF CAYLEY’S THEOREM

Given a group G, there is a map of sets
®: G — Map(G,G)

®(g)(h) =gh, forall g,heq.
Part of the assertion of Cayley’s Theorem is that Im(®) C Bij(G, G) C Map(G, G). In other
words, given g € GG, the claim is that the map ®(g) : G — G is a bijection. To show that
®(g) is a bijection, we need to show that it is injective and surjective.
First let us show that if g € G, then ®(g) is injective. This means, that given hy, hy € G,
then if ®(g)(h1) = ®(g)(h2), we need to show that hy = hy. Well,
ghy =: (g)(h1) = ®(g)(h2) = gha.
Then composing with ¢g=! on the left, we have that
hy =g 'ghy = g 'ghy = hs.
Thus ®(g) is injective.
Let us now show that ®(g) is surjective. This means that given h € G, we need to exhibit
h' € G such that ®(g)(h') = h. Well, given h € G, if we set b/ = g~'h, then
h=gh' = ®(g)(h').
Thus ®(g) is surjective. We have now succeeded in showing that if ¢ € G, then ®(g) €
Bij(G, G).
The next claim of Cayley’s Theorem is that
¢ : G — Bij(G, G)
is a group homomorphism. In other words, given g;, go € G, the claim is that

D(g192) = ®(g1) o P(g2).

It is enough to check this holds when the maps are applied to each h € GG. In other words,
for h € GG, we have

D(g192)(h) = (g192)h = g1(g2h) = (P(g1) 0 P(g2))(h).

Thus ®(g192) = P(g1) 0 P(g2).

The last claim of Cayley’s Theorem is that @ is injective. In other words, given ¢;, g2 € G,
if ®(g1) = ®(g2), then the claim is that g; = go. To prove this, apply ®(g;) and ®(g2) to the
identity element of G:

g1 = ®(g1)(e) = (g2)(€) = g.
This shows that ® is injective, and completes the proof of Cayley’s Theorem.

4. THE EXAMPLE OF THE DIHEDRAL GROUP
Recall the dihedral group:
(4.1) D,={Id,R,...,R* ' D,DR,..., DR" '},

where we compose under the rules that R® = Id, D? = Id, and DR = R" !'D. Then Cayley’s
Theorem tells us there is an injective group homomorphism

®: D, — Bij(D,) & S
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We can tell that ® is not surjective (for n > 1) by counting elements (the order of D,, is 2n,
whereas the order of Sy, is (2n)!).

Exercise 4.1. If we label the elements of D, from 1,...,2n, in the order given above in
(4.1), what is the permuation associated to R; i.e., under the induced isomorphism ¥ :
Bij(D,) — San, what is the element ¥ o &(R)?

Exercise 4.2. Can you find an injective homomorphism ¢ : D,, — S,,7 Are any of the
homomorphisms you find surjective?
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