CHAPTER 6

A brief introduction to linear algebra

1. Vector spaces and linear maps
In what follows, fix K € {Q, R, C}. More generally, K can be any field.
1.1. Vector spaces. Motivated by our intuition of adding and scaling vectors
in the plane (see Figure 1), we make the following definition:

Definition 6.1.1. A K-vector space consists of a triple (V,+, ), where V is a set, and
+:VxV = Vand - : KxV = Varemaps, satisfying the following properties:
(1) (Group laws)
(a) (Additive identity) There exists an element ¢ € V such that forallv € V,
v+ 0 =v;
(b) (Additive inverse) For each v € V there exists an element —v € V such
that v + (—v) = 0;
(c) (Associativity of addition) For all v1,v9,v3 € V,
(v1+02) +v3 =01+ (v2 +v3);
(2) (Abelian property)
(a) (Commutativity of addition) For all v1,v2 € V,
U1+ 02 =02+ 015

(3) (Module conditions)
(@) Forall A € Kandall vy,v, €V,

A (v1+02) = (A-01) + (A v2);
(b) Forall A7,Ap € K, andallv €V,
(M +A2) 0= (A-0)+ (A2 0);
(c) Forall A,y € K,andallv eV,
(MA2) 0= A1+ (A2 0);
(d) Forallv eV,
1-v=no.
In the above, for all A € K and all v,v1,v, € V we have denoted +(vy,v;) by v1 + v
and -(A,v) by A - v.
In addition, for brevity, we will often write Av for A - v.
EXAMPLE 6.1.2 (The vector space K"). By definition,
K'"={(xq,...,xp) : x, €K, 1 <i<mn}.
The map + : K" x K" — K" is defined by the rule
(xl/"-/xl’l) + (]/1/ . -,]/n) = (xl +]/1/ . 'rxn +]/n)
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U1 + 02

FIGURE 1. Adding and scaling vectors in the plane

for all (x1,...,%x),(y1,-..,¥n) € K". The map - : K x K" — K" is defined by the
rule
Ao(xy,..0,x0) = (Axq, ..., Axy)

forall A € Kand (xy,...,x,) € K".
Exercise 6.1.3. Show that (K", +, ), defined in the example above, is a K-vector space.

Exercise 6.1.4 (Cancelation rule). Let (V,+,-) be a K-vector space. Show that if we
have vy, vy, w € V, then

U+ W=0+wW < U1 = 0.

Exercise 6.1.5 (Unique additive identity). Let (V,+,) be a K-vector space. Fix an
element O € V such that for all v € V, we have v + 0 = v. Show that if w € V satisfies
vV+w="1forallv' € V, thenw = 0.

Exercise 6.1.6 (Unique additive inverse). Let (V,+, -) be a K-vector space. Letv € V.
Fix an element —v € V such that v 4+ (—v) = 0. Suppose that there is w € V such that
v+ w = 0. Show that w = —v.

Exercise 6.1.7. Let (V,+,-) be a K-vector space. Show the following properties hold for
all v,v1,v0 € Vandall A,A,A» € K.

(1) ov=20.

) A0 = 0.

(B) (=A)v = —(Av) = A(—0).

(4) If \v = O, then either A =0orv = 0.

(5) If Avy = Avy, then either A = 0 or v1 = ;.

(6) If Aqv = Agu, then either Ay = Aporv = 0.

(7) —(v1 +v2) = (—0v1) + (—02).

(8) v+v=2v,v+v+v =230 and in general ' ; v = nv.

Exercise 6.1.8. Comnsider the set of maps from a set S to K. Let us denote this set by
Map (S, K). Define addition and multiplication maps
+ : Map(S, K) x Map(S,K) — Map(S, K)
and
-1 K x Map(S, K) — Map(S, K)

in the following way. For all f,g € Map(S,K), set f + g to be the function defined by
(f+9)(x) = f(x)+g(x) forall x € S. Forall A € Kand all f € Map(S,K),set A - f
to be the function defined by (A - f)(x) = Af(x) forall x € S. Show thatif S # @ then
(Map(S,K), +,-) is a K-vector space.
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2. Sub-vector spaces

Definition 6.2.9 (sub-K-vector space). Let (V,+,-) be a K-vector space. A sub-K-
vector space of (V,+, ) is a K-vector space (V',+', ") such that V' C V and such that
forall ', v, v, € V'andall A € K,

o+ vh =0 +vh and AV =)0
We will write (V/,+/,-") C (V,+, ).

Definition 6.2.10. If (V,+,-) is a K-vector space, and V' C V is a subset, we say that
V' is closed under + (resp. closed under ) if for all v}, v, € V' (resp. forall A € K and
allv' € V') we have v} + v, € V' (resp. A - v’ € V'). In this case, we define

V' xV SV

(resp. -|yr : K x V' — V') to be the map given by v} + |0y, = v} + v (resp. A - |0 =
A-v'), forall v}, vh € V' (resp. forall A € Kand all v' € V').

REMARK 6.2.11. Note that if (V/,+/,.") is a sub-K-vector space of (V,+,-), then
V' is closed under + and -.

Exercise 6.2.12. Show that if a non-empty subset V' C 'V is closed under + and -, then
(V', 4|y, -|y) is a sub-K-vector space of (V,+,-).

Exercise 6.2.13. Show that if (V',+',-") is a sub-K-vector space of a K-vector space
(V,+,-), then the additive identity element ¢' € V' is equal to the additive identity
element O € V.

Exercise 6.2.14. Recall the R-vector space (Map(RR,R),+,) from Exercise 6.1.8. In
this exercise, show that the subsets of Map (IR, R) listed below are closed under + and -,
and so define sub-R-vector spaces of (Map(R,R), +, -).

(1) The set of all polynomial functions.

(2) The set of all polynomial functions of degree less than n.

(3) The set of all functions that are continuos on an interval (a,b) C R.

(4) The set of all functions differentiable at a point a € R.

(5) The set of all functions differentiable on an interval (a,b) C R.

(6) The set of all functions with f(1) = 0.

(7) The set of all solutions to the differential equation f" + af' +bf = 0 for some
a,beR.

Exercise 6.2.15. In this exercise, show that the subsets of Map (IR, R) listed below are
NOT closed under + and -, and so do not define sub-IR-vector spaces of (Map(R,R), +, -).

(1) Fix a € R with a # 0. The set of all functions with f(1) = a.
(2) The set of all solutions to the differential equation f" + af’ + bf = c for some
a,b,c € Rwithc # 0.

3. Linear maps

Definition 6.3.16 (Linear map). Let (V,+,-) and (V',+/,-") be K-vector spaces. A
linearmap F : (V,+,-) — (V', 4/, ") is a map of sets

f:v=V
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such that forall A € Kand v,v1,v2 €V,

for+02) = f(o1) + f(v2) and F(A-0) = A/ £(v).

Note that we will frequently use the same letter for the linear map and the
map of sets. The K-vector space (V,+,-) is called the source (or domain) of the
linear map and the K-vector space (V’,+/,-’) is called the target (or codomain) of
the linear map. The set f(V) C V' is called the image (or range) of f.

Exercise 6.3.17. Let f : (V,+,) — (V',+',-") be a linear map of K-vector spaces.
Show that the image of f is closed under +',-', and so defines a sub-K-vector space of the
target (V/,+/, ).

Exercise 6.3.18. Let f : (V,+,-) — (V',+/,"") be a linear map of K-vector spaces.
Show that f(0) = 0.

Exercise 6.3.19. Show that the following maps of sets define linear maps of the K-vector
spaces.

(1) Let (V,+,-) be a K-vector space. Show that the identity map f : V — V, given
by f(v) = v forallv € V, is a linear map. This linear map will frequently be
denoted by Idy.

(2) Let (V,+,-) and (V',+',-") be K-vector spaces. Show that the zero map f :
V — V/, given by f(v) = 0’ forallv € V, is a linear map.

(3) Let (V,+,-) be a K-vector space and let « € K. Show that the multiplication
map f:V — V given by f(v) = a-v forall v € V is a linear map. This linear
map will frequently be denoted by a1dy.

(4) Let a;; € Kforl <i<mand1 <j < mn. Show that the map f : K* — K™
given by

n n n
flxq, ..., xn) = (Z agjxj, ..., Zﬂijxj/- .., Zﬂmjxj>
=1 j=1 j=1

is a linear map.

(5) Let (V,+,-) be the R-vector space of all differentiable real functions g : R — R.
Let (V',+',") be the R-vector space of all real functions g : R — R. Show that
themap f = (V,+,-) — (V',+/, ") that sends a differentiable function g to its
derivative §' is a linear map.

(6) Let (V,+,-) be the R-vector space of all continuous real functions f : R — R.
Show that the map f : (V,+,-) — (V,+,-) that sends a function ¢ € V to the
function f(g) € V determined by

f(g)(x):= /ﬂx g(t)dt forallx € R

is a linear map. Make sure to show that f(g) € V forallg € V.
Definition 6.3.20 (Kernel). Let f : (V,+,-) — (V',+/,"") be a linear map of K-vector
spaces. The kernel of f (or Null space of f), denoted ker(f) (or Null(f)), is the set
ker(f) := f 10" ={veV:flv)=0"}.

Exercise 6.3.21. Let f : (V,+,-) — (V',+/,"") be a linear map of K-vector spaces.
Show that ker(f) is a sub-K-vector space of (V,+,-).
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Exercise 6.3.22. Find the kernel of each of the linear maps listed below (see Problem
3.19).

(1) The linear map Idy.

(2) The zeromap V. — V'.

(3) The linear map x 1dy .

(4) Letajj € Kfor1 <i<mand1 < j<mn.Thelinear map f : K" — K" defined

by
n n n
f(X1,...,Xn): Zaljx]-,...,Zai]-x]-,...,zgmjxj .
j=1 j=1 j=1

(5) Let (V,+,-) be the R-vector space of all differentiable real functions g : R — R.
Let (V',+',"") be the R-vector space of all real functions ¢ : R — R. The linear
map f 2 (V,+,-) — (V/,+',") that sends a differentiable function g to its
derivative §'.

(6) Let (V,+,-) be the R-vector space of all continous real functions g : R — RR.
Let a € R. The linear map f : (V,+,-) — (V,+,-) that sends a function
g € V to the function f(g) € V determined by

f(g)(x) = /x g(t)dt forall x € R.

Exercise 6.3.23. Show that the composition of linear maps is a linear map.

Definition 6.3.24 (Isomorphism). Let f : (V,+,-) — (V',+/,) be a linear map of
K-vector spaces. We say that f is an isomorphism of K-vector spaces if there is a linear
map g : (V',+',-") = (V,+, ) of K-vector spaces such that

go f = Id(V,+,-) and f °0g = Id(v//+//_/) .

Exercise 6.3.25. Show that a linear map is an isomorphism if and only if it is bijective.

4. Bases and dimension

4.1. Linear maps determined by elements of a vector space. The basic exam-
ple we are interested in is the following. Let V be a K-vector space. We fix

V = (Z)],. ..,vn) 6 Vn.
From this we obtain a map
Ly:K'" =V
n
(a1,...,an) = Y ajv;.
i=1
Exercise 6.4.26. Show that Ly is a linear map.

4.2. Span, linear independence, and bases. For every permutation o € X,
the symmetric group on n-letters, we set

V‘T = (Ua(l)/ . ,Ug(n)).
Definition 6.4.27. Let V bea K-vector space, and let vy,...,v, € V. Setv = (v1,...,0p).
We say:

(1) The elements vy, ...,v, span V (or generate V) if for every o € X, the linear
map Lye is surjective.
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(2) The elements vy,...,v, are linearly independent if for every o € X, the
linear map Lo is injective.

(3) The elements vy, ..., v, are a basis for V if for every o € L, the linear map
Lye is an isomorphism.

Exercise 6.4.28. Let V be a K-vector space, and let vy, ..., v, € V. Setv = (v1,...,0p).

(1) The elements vq,...,v, span V (or generate V) if for any o € X, the linear
map Lyo is surjective.

(2) The elements vy, ..., v, are linearly independent if for any o € L, the linear
map Lye is injective.

(3) The elements vq,. .., v, are a basis for V if for any o € L, the linear map Lye
is an isomorphism.

Exercise 6.4.29. Let V be a K-vector space, and let vy, ..., v, € V.

(1) The elements vy, ...,v, span V (or generate V) if for any v € 'V, there exists
(a1,...,an) € K" such that Y} | a;v; = v.

(2) The elements vy, ..., vy, are linearly independent if whenever (ay,...,a,) €
K" and y! | ajv; = 0, we have (ay, ...,a,) = 0.

(3) The elements vy, ...,vy are a basis for V if they span V and are linearly inde-
pendent.

4.3. Dimension. We start with the following motivational exercise:

Exercise 6.4.30. If K" = K", then n = m.

Definition 6.4.31. A K-vector space V is said to be of dimension n if there is an isomor-
phism V =2 K".

Exercise 6.4.32. Show that a K-vector space V has dimension n if and only if it has a
basis consisting of n elements.
5. Direct products of vector spaces

EXAMPLE 6.5.33. Suppose that (V3,+1,-1) and (Va, +2,-2) are K-vector spaces.
There is a K-vector space

(V1,+1,1) x (Vo,+2,72) := (Vi x Vo, +,+)
where V; X V; is the product of the sets V4 and V3, where
+Z(V1XV2)><(V1><V2)—)V1XV2

is defined by
(v1,02) + (v],05) = (v1 +1 0], 02 +2 0h)
and
G Kx (VM x V) =5V xV,
is defined by

A (v1,02) = (A101,A 2 02).

Exercise 6.5.34. Show that the triple (Vl, “+1, -1) X (Vz, +2,'2) = (V1 X Vs, —|—,) in
the example above is a K-vector space.

Definition 6.5.35 (Direct product). Suppose that (Vy,+1,+1) and (Va,+2,-2) are K-
vector spaces. We define the direct product of (V1,+1,-1) and (Va,+2,-2), written
(V1,+1,1) X (Va,+2,2), to be the K-vector space (V1 x Va, +, -) defined above.
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Exercise 6.5.36. Let V1 and V; be K-vector spaces. Show the following:

(1) There is an injective linear map iy : Vi — Vq x V, given by vy — (v1, Oy,),
and a surjective linear map p1 : Vi x Vo — V given by (vq,v2) — 01.

(2) There is an injective linear map iy : Vi — Vi x V, given by vy — (O, v2),
and a surjective linear map py : Vi x Vo — V, given by (v1,v3) — ;.

6. Quotient vector spaces

Suppose that (V,+,) is a K-vector space, and W C V is a sub-K-vector space.
Define an equivalence relation on V by the rule

U1~ Uy <= v —1Up €W.
Exercise 6.6.37. Show that this defines an equivalence relation on V.
Let V/W be the set of equivalence classes, and let

n:V—V/W

be the quotient map of sets. For any element v € V /W, there is an element v € V
such that v = [v], where [v] is the equivalence class of v.

Exercise 6.6.38. Let V be a K-vector space and suppose that W C V is a sub-K-vector
space.

(1) Suppose that [v1], [v2] € V//W. Show that the rule
[01] + [v2] = [01 + 2]
defines a map
+:V/WxV/W—=V/W.
(2) Suppose that A € K and [v] € V /W. Show that the rule
A-fel = [A-0)
defines a map
G KxV/W—=V/W.
(3) Show that V /W is a K-vector space with 4 and - defined as above.

(4) Show that v : V — V /W is a surjective linear map with kernel W.

Definition 6.6.39 (Quotient K-vector space). Let V be a K-vector space and let W C V
be a sub-K-vector space. The quotient (K-vector space) of V by W is the K-vector space
V' /W constructed above.

Exercise 6.6.40. Suppose that ¢ : V — V' is a surjective linear map of K-vector spaces.

(1) Show that V' =V / ker ¢.
(2) If V' is finite dimensional, show that V == (ker ¢) x V'.
(3) If V and V' are finite dimensional, show that dim V = dim V' 4 dim(ker ¢).

7. Further exercises

Exercise 6.7.41. Find an example of a triple (V,+,-) satisfying all of the conditions of
the definition of a K-vector space, except for condition (3)(d).
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Exercise 6.7.42. Suppose that L : K" — K" is a linear map. For j = 1,...,n define

ej =(0,...,1,...,0) € K" to be the element with all entries O except for the j-th place,

which is 1. Similarly, for i = 1,...,m define f’ : K™ — K to be the linear map defined

by (y1,.-.,Ym) — yi. Show that L is the same as the linear map defined in Example
3.19(4) with the matrix A € My xn(K) defined by Ajj = a;; = £ (L(e;)).



