4.2. Partially ordered sets. It is often convenient to order things in a collection. This leads to the notion of a partially ordered set.
Definition 1.4.37. A POSET (partially ordered set) consists of a set S and a subset $R \subseteq S \times S$ (a relation) such that for all $s_{1}, s_{2}, s_{3} \in S$, the following hold:
(1) (Reflexive) $\left(s_{1}, s_{1}\right) \in R$;
(i.e., $s_{1} \leq s_{1}$).
(2) (Antisymmetric) If $\left(s_{1}, s_{2}\right) \in R$ and $\left(s_{2}, s_{1}\right) \in R$, then $s_{1}=s_{2}$; (i.e., $s_{1} \leq s_{2}$ and $s_{2} \leq s_{1}$ implies $s_{1}=s_{2}$).
(3) (Transitive) If $\left(s_{1}, s_{2}\right) \in R$ and $\left(s_{2}, s_{3}\right) \in R$, then $\left(s_{1}, s_{3}\right) \in R$; (i.e., $s_{1} \leq s_{2}$ and $s_{2} \leq s_{3}$ implies $s_{1} \leq s_{3}$).

REMARK 1.4.38. As indicated above, we will often write $s_{1} \leq s_{2}$ if $\left(s_{1}, s_{2}\right) \in R$, and (S, \leq) for (S, R).

REMARK 1.4.39. This definition is similar to that of an equivalence relation. The difference is in (2), where here we require that if $\left(s_{1}, s_{2}\right) \in R$ and $s_{1} \neq s_{2}$, then $\left(s_{2}, s_{1}\right) \notin R$ (whereas for an equivalence relation we would require the opposite, that $\left(s_{2}, s_{1}\right)$ was in the relation).

Figure 15. Diagram of a POSET
There are a number of notions related to POSETs that we will want to utilize.

- A totally ordered set is a POSET such that for every $s_{1}, s_{2} \in S$, either $s_{1} \leq s_{2}\left(\left(s_{1}, s_{2}\right) \in R\right)$ or $s_{2} \leq s_{1}\left(\left(s_{2}, s_{1}\right) \in R\right)$.
EXAMPLE 1.4.40. The real numbers with the usual notion of inequality is a totally ordered set.
- A subPOSET $\left(S^{\prime}, R^{\prime}\right)$ of a POSET (S, R) is a POSET such that $S^{\prime} \subseteq S$ and $R^{\prime}=R \cap\left(S^{\prime} \times S^{\prime}\right)$; in other words, for all $s_{1}^{\prime}, s_{2}^{\prime} \in S^{\prime}, s_{1}^{\prime} \leq^{\prime} s_{2}^{\prime}$ if and only if $s_{1}^{\prime} \leq s_{2}^{\prime}$.
EXAMPLE 1.4.41. The rational numbers inside of the real numbers form a subPOSET with the usual notion of inequality.
- An upper bound for a subPOSET $\left(S^{\prime}, R^{\prime}\right)$ in (S, R) is an element $u \in S$ such that $s^{\prime} \leq u\left(\left(s^{\prime}, u\right) \in R\right)$ for all $s^{\prime} \in S^{\prime}$.
EXAMPLE 1.4.42. The negative real numbers form a subPOSET of the real numbers; this subPOSET has 1 as an upper bound. In fact any nonnegative real number will be an upper bound.
- A chain in a POSET (S, R) is a totally ordered subPOSET.
- A maximal element of a POSET (S, R) is an element $m \in S$ such that for all $s \in S$ we have $m \leq s((m, s) \in R)$ implies $s=m$. (Note, this is not necessarily an upper bound for (S, R) in (S, R); i.e. there can be many maximal elements.)
Lemma 1.4.43 (Zorn's Lemma). Let (S, \leq) be a POSET. If every chain in (S, \leq) has an upper bound in (S, \leq), then (S, \leq) has a maximal element.
REMARK 1.4.44. This is equivalent to the Axiom of Choice: Every surjective map of sets $X \rightarrow B$ admits a section. For a proof of the equivalence, see e.g. [Mun00].

