AXIOMS FOR INCIDENCE PLANES

MATH 2001

SEBASTIAN CASALAINA

ABSTRACT. These are the axioms we will use for incidence planes. These are meant to clarify the meaning of the definition [Har00, p.66].

1. Planes

Definition 1.1 (Plane). A *plane* consists of a pair (Π, Λ) where Π is a set and $\Lambda \subseteq \mathcal{P}(\Pi)$ is a subset of the power set of Π .

We will often call the elements of Π *points*, and refer to Π as the set of points in the plane. Similarly, we will often call the elements of Λ *lines*, and refer to Λ as the set of lines in the plane. We say a point $p \in \Pi$ is contained in a line $\ell \in \Lambda$ if $p \in \ell$.

Example 1.2 (Empty example). Let $\Pi = \emptyset$ and let $\Lambda = \emptyset$. Then (Π, Λ) is a plane.

Example 1.3 (Real Cartesian plane). Let $\Pi = \mathbb{R}^2$. An affine linear subset of \mathbb{R}^2 is a subset $\ell \subseteq \mathbb{R}^2$ such there exist real numbers $a, b, c \in \mathbb{R}$ with $a \neq 0$ or $b \neq 0$, and

$$\ell = \{(x, y) \in \mathbb{R}^2 : ax + by + c = 0\}.$$

Let $\Lambda \subseteq \mathbb{P}(\Pi)$ be the set of affine linear subsets of \mathbb{R}^2 . Then (Π, Λ) is a plane, which we call the *real Cartesian plane*.

2. INCIDENCE PLANES

Definition 2.1 (Incidence plane). An *incidence plane* is a plane (Π, Λ) satisfying the following conditions:

- (II) (Two distinct points determine a unique line) For every $p_1, p_2 \in \Pi$ with $p_1 \neq p_2$, there exists a unique $\ell \in \Lambda$ such that $p_1 \in \ell$ and $p_2 \in \ell$.
- (I2) (Every line determines two distinct points) For every $\ell \in \Lambda$, there exist $p_1, p_2 \in \Pi$ with $p_1 \neq p_2$ such that $p_1 \in \ell$ and $p_2 \in \ell$.
- (I3) (There exist 3 distinct non-colinear points) There exist $p_1, p_2, p_3 \in \Pi$ with $p_1 \neq p_2, p_1 \neq p_3$, and $p_2 \neq p_3$, such that there does not exist $\ell \in \Lambda$ with $p_1 \in \ell$, $p_2 \in \ell$ and $p_3 \in \ell$.

Date: February 2, 2020.

Exercise 2.2 (Incidence planes have points and lines). *Let* (Π, Λ) *be an incidence plane.*

- (1) Show that $\Pi \neq \emptyset$. In fact, show that Π has at least 3 elements.
- (2) Show that $\Lambda \neq \emptyset$. In fact, show that Λ has at least 3 elements.

Exercise 2.3 (Lines contain points, but not all the points). *Let* (Π, Λ) *be an incidence plane.*

- (1) Show that $\emptyset \notin \Lambda$.
- (2) Show that $\Pi \notin \Lambda$.

Example 2.4 (Minimal incidence plane). Here we consider the case where

$$\Pi = \{1,2,3\}$$
 and $\Lambda = \{\{1,2\},\{1,3\},\{2,3\}\}.$

Then (Π, Λ) is an incidence plane. Indeed, first, since $\Lambda \subseteq \mathcal{P}(\Pi) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \Pi\}$, we have that (Π, Λ) is a plane. To check (Π, Λ) is an incidence plane, we need to check that it satisfies (I1), (I2), and (I3) above. For (I1), there are three possible choices for $p_1, p_2 \in \Pi$ with $p_1 \neq p_2$. We can have $p_1 = 1$ and $p_2 = 2$, or we can have $p_1 = 1$ and $p_2 = 3$. In the first case, namely $p_1 = 1$ and $p_2 = 2$, then $\{1,2\} \in \Lambda$ is the only $\ell \in \Lambda$ with $p_1 = 1 \in \ell$ and $p_2 = 2 \in \ell$. The other cases are similar, and are left to you to confirm as an exercise. For (I2), there are three $\ell \in \Lambda$ to consider, namely $\{1,2\}$, $\{1,3\}$, and $\{2,3\}$. In the first case, namely $\ell = \{1,2\}$, then $\{1,2\} \in \{1,2\}$ with $\{1,2\} \in \{1,3\}$, and $\{2,3\} \in \{1,2\} \in \{1,2\}$ with $\{1,2\} \in \{1,3\} \in \{1,3\}$

Example 2.5 (Real Cartesian plane). Let (Π, Λ) be the real Cartesian plane (Example 1.2). Then (Π, Λ) is an incidence plane. We have already seen that (Π, Λ) is a plane. To check it is an incidence plane, we need to confirm (I1), (I2), and (I3). For (I1), given $p_1 = (a_1, a_2) \in \mathbb{R}^2$ and $p_2 = (b_1, b_2) \in \mathbb{R}^2$, then p_1 and p_2 are contained in the line

$$y - a_2 = \frac{b_2 - a_2}{b_1 - a_1} (x - a_1)$$

if $a_1 \neq b_1$; if $a_1 = b_1$, they are contained in the line $x = a_1$. For (I2), if $\ell = \{ax + by + c = 0\}$ with $b \neq 0$, then we may take $p_1 = (0, -c/b)$, and $p_2 = (1, -(c+a)/b)$. If b = 0, then we may take $p_1 = (-c/a, 0)$ and $p_2 = (-c/a, 1)$. For (I3), we may take $p_1 = (0, 0)$, $p_2 = (1, 0)$, and $p_3 = (0, 1)$; it is left to you as an exercise to show that there do not exist $a, b, c \in \mathbb{R}$ with $a \neq 0$ or $b \neq 0$, so that p_1, p_2 , and p_3 all satisfy the equation ax + by + c = 0.

Definition 2.6 (Parallel lines). Given a plane (Π, Λ) , we say that $\ell_1, \ell_2 \in \Lambda$ are *parallel* if $\ell_1 \neq \ell_2$ and there is no $p \in \Pi$ such that $p \in \ell_1$ and $p \in \ell_2$. We also say that $\ell_1, \ell_2 \in \Lambda$ are parallel if $\ell_1 = \ell_2$.

3. Some further exercises

In the following exercises, we will assume that we are given an incidence plane (Π, Λ) .

Exercise 3.1 (Non-parallel lines meet in a unique point). *If* ℓ_1 , $\ell_2 \in \Lambda$ *are not parallel, then there is a unique* $p \in \Pi$ *with* $p \in \ell_1$ *and* $p \in \ell_2$.

Exercise 3.2 (There exist three distinct lines not all meeting at one point). There exist $\ell_1, \ell_2, \ell_3 \in \Lambda$ with $\ell_1 \neq \ell_2, \ell_1 \neq \ell_3$, and $\ell_2 \neq \ell_3$, such that there does not exist $p \in \Pi$ with $p \in \ell_1$, $p \in \ell_2$, and $p \in \ell_3$.

Exercise 3.3 (There is at least one point not contained in any given line). Given $\ell \in \Lambda$, there exists $p \in \Pi$ with $p \notin \ell$.

Exercise 3.4 (There is at least one line not containing any given point). Given $p \in \Pi$, there exists $\ell \in \Lambda$ with $p \notin \ell$.

Exercise 3.5 (There are at least two distinct lines containing any given point). Given $p \in \Pi$, there exist $\ell_1, \ell_2 \in \Lambda$ with $\ell_1 \neq \ell_2$ such that $p \in \ell_1$ and $p \in \ell_2$.

REFERENCES

[Har00] Robin Hartshorne, *Geometry: Euclid and beyond*, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2000. MR 1761093

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309-0395

E-mail address: casa@math.colorado.edu