AXIOMS FOR INCIDENCE PLANES

MATH 2001

SEBASTIAN CASALAINA

Abstract. These are the axioms we will use for incidence planes. These are meant to clarify the meaning of the definition [Har00, p.66].

1. Planes

Definition 1.1 (Plane). A plane consists of a pair (Π, Λ) where Π is a set and $\Lambda \subseteq \mathscr{P}(\Pi)$ is a subset of the power set of Π.

We will often call the elements of Π points, and refer to Π as the set of points in the plane. Similarly, we will often call the elements of Λ lines, and refer to Λ as the set of lines in the plane. We say a point $p \in \Pi$ is contained in a line $\ell \in \Lambda$ if $p \in \ell$.

Example 1.2 (Empty example). Let $\Pi=\varnothing$ and let $\Lambda=\varnothing$. Then (Π, Λ) is a plane.
Example 1.3 (Real Cartesian plane). Let $\Pi=\mathbb{R}^{2}$. An affine linear subset of \mathbb{R}^{2} is a subset $\ell \subseteq \mathbb{R}^{2}$ such there exist real numbers $a, b, c \in \mathbb{R}$ with $a \neq 0$ or $b \neq 0$, and

$$
\ell=\left\{(x, y) \in \mathbb{R}^{2}: a x+b y+c=0\right\} .
$$

Let $\Lambda \subseteq \mathbb{P}(\Pi)$ be the set of affine linear subsets of \mathbb{R}^{2}. Then (Π, Λ) is a plane, which we call the real Cartesian plane.

2. INCIDENCE PLANES

Definition 2.1 (Incidence plane). An incidence plane is a plane (Π, Λ) satisfying the following conditions:
(I1) (Two distinct points determine a unique line) For every $p_{1}, p_{2} \in \Pi$ with $p_{1} \neq p_{2}$, there exists a unique $\ell \in \Lambda$ such that $p_{1} \in \ell$ and $p_{2} \in \ell$.
(I2) (Every line determines two distinct points) For every $\ell \in \Lambda$, there exist $p_{1}, p_{2} \in \Pi$ with $p_{1} \neq p_{2}$ such that $p_{1} \in \ell$ and $p_{2} \in \ell$.
(I3) (There exist 3 distinct non-colinear points) There exist $p_{1}, p_{2}, p_{3} \in \Pi$ with $p_{1} \neq p_{2}, p_{1} \neq p_{3}$, and $p_{2} \neq p_{3}$, such that there does not exist $\ell \in \Lambda$ with $p_{1} \in \ell, p_{2} \in \ell$ and $p_{3} \in \ell$.

Date: February 2, 2020.

Exercise 2.2 (Incidence planes have points and lines). Let (Π, Λ) be an incidence plane.
(1) Show that $\Pi \neq \varnothing$. In fact, show that Π has at least 3 elements.
(2) Show that $\Lambda \neq \varnothing$. In fact, show that Λ has at least 3 elements.

Exercise 2.3 (Lines contain points, but not all the points). Let (Π, Λ) be an incidence plane.
(1) Show that $\varnothing \notin \Lambda$.
(2) Show that $\Pi \notin \Lambda$.

Example 2.4 (Minimal incidence plane). Here we consider the case where

$$
\Pi=\{1,2,3\} \text { and } \Lambda=\{\{1,2\},\{1,3\},\{2,3\}\} .
$$

Then (Π, Λ) is an incidence plane. Indeed, first, since $\Lambda \subseteq \mathscr{P}(\Pi)=$ $\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}, \Pi\}$, we have that (Π, Λ) is a plane. To check (Π, Λ) is an incidence plane, we need to check that it satisfies (I1), (I2), and (I3) above. For (I1), there are three possible choices for $p_{1}, p_{2} \in \Pi$ with $p_{1} \neq p_{2}$. We can have $p_{1}=1$ and $p_{2}=2$, or we can have $p_{1}=1$ and $p_{2}=3$, or we can have $p_{1}=2$ and $p_{2}=3$. In the first case, namely $p_{1}=1$ and $p_{2}=2$, then $\{1,2\} \in \Lambda$ is the only $\ell \in \Lambda$ with $p_{1}=1 \in \ell$ and $p_{2}=2 \in \ell$. The other cases are similar, and are left to you to confirm as an exercise. For (I2), there are three $\ell \in \Lambda$ to consider, namely $\{1,2\},\{1,3\}$, and $\{2,3\}$. In the first case, namely $\ell=\{1,2\}$, then $1,2 \in\{1,2\}$ with $1 \neq 2$. The other cases are similar, and are left to you to confirm as an exercise. For (I3), we can take $p_{1}=1, p_{2}=2$, and $p_{3}=3$. We have $p_{1} \neq p_{2}, p_{1} \neq p_{3}$, and $p_{2} \neq p_{3}$, and moreover, there is no $\ell \in \Lambda$ with $p_{1}=1 \in \ell, p_{2}=2 \in \ell$, and $p_{3}=3 \in \ell$. Thus we have confirmed that the plane (Π, Λ) satisfies (I1), (I2), and (I3), so that (Π, Λ) is an incidence plane.

Example 2.5 (Real Cartesian plane). Let (Π, Λ) be the real Cartesian plane (Example 1.2). Then (Π, Λ) is an incidence plane. We have already seen that (Π, Λ) is a plane. To check it is an incidence plane, we need to confirm (I1), (I2), and (I3). For (I1), given $p_{1}=\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$ and $p_{2}=\left(b_{1}, b_{2}\right) \in \mathbb{R}^{2}$, then p_{1} and p_{2} are contained in the line

$$
y-a_{2}=\frac{b_{2}-a_{2}}{b_{1}-a_{1}}\left(x-a_{1}\right)
$$

if $a_{1} \neq b_{1}$; if $a_{1}=b_{1}$, they are contained in the line $x=a_{1}$. For (I2), if $\ell=\{a x+b y+c=0\}$ with $b \neq 0$, then we may take $p_{1}=(0,-c / b)$, and $p_{2}=(1,-(c+a) / b)$. If $b=0$, then we may take $p_{1}=(-c / a, 0)$ and $p_{2}=(-c / a, 1)$. For (I3), we may take $p_{1}=(0,0), p_{2}=(1,0)$, and $p_{3}=(0,1)$; it is left to you as an exercise to show that there do not exist $a, b, c \in \mathbb{R}$ with $a \neq 0$ or $b \neq 0$, so that p_{1}, p_{2}, and p_{3} all satisfy the equation $a x+b y+c=0$.
Definition 2.6 (Parallel lines). Given a plane (Π, Λ), we say that $\ell_{1}, \ell_{2} \in \Lambda$ are parallel if $\ell_{1} \neq \ell_{2}$ and there is no $p \in \Pi$ such that $p \in \ell_{1}$ and $p \in \ell_{2}$. We also say that $\ell_{1}, \ell_{2} \in \Lambda$ are parallel if $\ell_{1}=\ell_{2}$.

3. SOME FURTHER EXERCISES

In the following exercises, we will assume that we are given an incidence plane (Π, Λ).

Exercise 3.1 (Non-parallel lines meet in a unique point). If $\ell_{1}, \ell_{2} \in \Lambda$ are not parallel, then there is a unique $p \in \Pi$ with $p \in \ell_{1}$ and $p \in \ell_{2}$.
Exercise 3.2 (There exist three distinct lines not all meeting at one point). There exist $\ell_{1}, \ell_{2}, \ell_{3} \in \Lambda$ with $\ell_{1} \neq \ell_{2}, \ell_{1} \neq \ell_{3}$, and $\ell_{2} \neq \ell_{3}$, such that there does not exist $p \in \Pi$ with $p \in \ell_{1}, p \in \ell_{2}$, and $p \in \ell_{3}$.
Exercise 3.3 (There is at least one point not contained in any given line). Given $\ell \in \Lambda$, there exists $p \in \Pi$ with $p \notin \ell$.
Exercise 3.4 (There is at least one line not containing any given point). Given $p \in \Pi$, there exists $\ell \in \Lambda$ with $p \notin \ell$.

Exercise 3.5 (There are at least two distinct lines containing any given point). GIven $p \in \Pi$, there exist $\ell_{1}, \ell_{2} \in \Lambda$ with $\ell_{1} \neq \ell_{2}$ such that $p \in \ell_{1}$ and $p \in \ell_{2}$.

References

[Har00] Robin Hartshorne, Geometry: Euclid and beyond, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2000. MR 1761093

[^0]
[^0]: University of Colorado, Department of Mathematics, Campus Box 395, BoulDER, CO 80309-0395

 E-mail address: casa@math.colorado.edu

