A brief introduction to linear algebra

1. Vector spaces and linear maps

In what follows, fix $K \in\{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$. More generally, K can be any field.
1.1. Vector spaces. Motivated by our intuition of adding and scaling vectors in the plane (see Figure 1), we make the following definition:
Definition 6.1.1 (K-vector space). A K-vector space consists of a triple $(V,+, \cdot)$, where V is a set, and $+: V \times V \rightarrow V$ and $: K \times V \rightarrow V$ are maps, satisfying the following properties:
(1) (Group laws)
(a) (Additive identity) There exists an element $\mathscr{O} \in V$ such that for all $v \in V$, $v+\mathscr{O}=v ;$
(b) (Additive inverse) For each $v \in V$ there exists an element $-v \in V$ such that $v+(-v)=\mathscr{O}$;
(c) (Associativity of addition) For all $v_{1}, v_{2}, v_{3} \in V$,

$$
\left(v_{1}+v_{2}\right)+v_{3}=v_{1}+\left(v_{2}+v_{3}\right)
$$

(2) (Abelian property)
(a) (Commutativity of addition) For all $v_{1}, v_{2} \in V$,

$$
v_{1}+v_{2}=v_{2}+v_{1}
$$

(3) (Module conditions)
(a) For all $\lambda \in K$ and all $v_{1}, v_{2} \in V$,

$$
\lambda \cdot\left(v_{1}+v_{2}\right)=\left(\lambda \cdot v_{1}\right)+\left(\lambda \cdot v_{2}\right)
$$

(b) For all $\lambda_{1}, \lambda_{2} \in K$, and all $v \in V$,

$$
\left(\lambda_{1}+\lambda_{2}\right) \cdot v=\left(\lambda_{1} \cdot v\right)+\left(\lambda_{2} \cdot v\right) ;
$$

(c) For all $\lambda_{1}, \lambda_{2} \in K$, and all $v \in V$,

$$
\left(\lambda_{1} \lambda_{2}\right) \cdot v=\lambda_{1} \cdot\left(\lambda_{2} \cdot v\right)
$$

(d) For all $v \in V$,

$$
1 \cdot v=v
$$

In the above, for all $\lambda \in K$ and all $v, v_{1}, v_{2} \in V$ we have denoted $+\left(v_{1}, v_{2}\right)$ by $v_{1}+v_{2}$ and $\cdot(\lambda, v)$ by $\lambda \cdot v$.

In addition, for brevity, we will often write λv for $\lambda \cdot v$.
EXAMPLE 6.1.2 (The vector space K^{n}). By definition,

$$
K^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in K, 1 \leq i \leq n\right\}
$$

Figure 1. Adding and scaling vectors in the plane
The map $+: K^{n} \times K^{n} \rightarrow K^{n}$ is defined by the rule

$$
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in K^{n}$. The map $\cdot: K \times K^{n} \rightarrow K^{n}$ is defined by the rule

$$
\lambda \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)
$$

for all $\lambda \in K$ and $\left(x_{1}, \ldots, x_{n}\right) \in K^{n}$.
Exercise 6.1.3. Show that $\left(K^{n},+, \cdot\right)$, defined in the example above, is a K-vector space.
Exercise 6.1.4 (Cancelation rule). Let $(V,+, \cdot)$ be a K-vector space. Show that if we have $v_{1}, v_{2}, w \in V$, then

$$
v_{1}+w=v_{2}+w \Longleftrightarrow v_{1}=v_{2}
$$

Exercise 6.1.5 (Unique additive identity). Let $(V,+, \cdot)$ be a K-vector space. Fix an element $\mathscr{O} \in V$ such that for all $v \in V$, we have $v+\mathscr{O}=v$. Show that if $w \in V$ satisfies $v^{\prime}+w=v^{\prime}$ for all $v^{\prime} \in V$, then $w=\mathscr{O}$.
Exercise 6.1.6 (Unique additive inverse). Let ($V,+, \cdot$) be a K-vector space. Let $v \in V$. Fix an element $-v \in V$ such that $v+(-v)=\mathscr{O}$. Suppose that there is $w \in V$ such that $v+w=\mathscr{O}$. Show that $w=-v$.
Exercise 6.1.7. Let $(V,+, \cdot)$ be a K-vector space. Show the following properties hold for all $v, v_{1}, v_{2} \in V$ and all $\lambda, \lambda_{1}, \lambda_{2} \in K$.
(1) $0 v=\mathscr{O}$.
(2) $\lambda \mathscr{O}=\mathscr{O}$.
(3) $(-\lambda) v=-(\lambda v)=\lambda(-v)$.
(4) If $\lambda v=\mathscr{O}$, then either $\lambda=0$ or $v=\mathscr{O}$.
(5) If $\lambda v_{1}=\lambda v_{2}$, then either $\lambda=0$ or $v_{1}=v_{2}$.
(6) If $\lambda_{1} v=\lambda_{2} v$, then either $\lambda_{1}=\lambda_{2}$ or $v=\mathscr{O}$.
(7) $-\left(v_{1}+v_{2}\right)=\left(-v_{1}\right)+\left(-v_{2}\right)$.
(8) $v+v=2 v, v+v+v=3 v$, and in general $\sum_{i=1}^{n} v=n v$.

Exercise 6.1.8. Consider the set of maps from a set S to K. Let us denote this set by $\operatorname{Map}(S, K)$. Define addition and multiplication maps

$$
+: \operatorname{Map}(S, K) \times \operatorname{Map}(S, K) \rightarrow \operatorname{Map}(S, K)
$$

and

$$
\cdot: K \times \operatorname{Map}(S, K) \rightarrow \operatorname{Map}(S, K)
$$

in the following way. For all $f, g \in \operatorname{Map}(S, K)$, set $f+g$ to be the function defined by $(f+g)(x)=f(x)+g(x)$ for all $x \in S$. For all $\lambda \in K$ and all $f \in \operatorname{Map}(S, K)$, set $\lambda \cdot f$
to be the function defined by $(\lambda \cdot f)(x)=\lambda f(x)$ for all $x \in S$. Show that if $S \neq \varnothing$ then $(\operatorname{Map}(S, K),+, \cdot)$ is a K-vector space.

2. Sub-vector spaces

Definition 6.2.9 (sub-K-vector space). Let $(V,+, \cdot)$ be a K-vector space. A sub-Kvector space of $(V,+, \cdot)$ is a K-vector space $\left(V^{\prime},+^{\prime}, .^{\prime}\right)$ such that $V^{\prime} \subseteq V$ and such that for all $v^{\prime}, v_{1}^{\prime}, v_{2}^{\prime} \in V^{\prime}$ and all $\lambda \in K$,

$$
v_{1}^{\prime}+{ }^{\prime} v_{2}^{\prime}=v_{1}^{\prime}+v_{2}^{\prime} \quad \text { and } \quad \lambda \cdot^{\prime} v^{\prime}=\lambda \cdot v^{\prime}
$$

We will write $\left(V^{\prime},+^{\prime},,^{\prime}\right) \subseteq(V,+, \cdot)$.
Definition 6.2.10. If $(V,+, \cdot)$ is a K-vector space, and $V^{\prime} \subseteq V$ is a subset, we say that V^{\prime} is closed under + (resp. closed under .) iffor all $v_{1}^{\prime}, v_{2}^{\prime} \in V^{\prime}$ (resp. for all $\lambda \in K$ and all $v^{\prime} \in V^{\prime}$) we have $v_{1}^{\prime}+v_{2}^{\prime} \in V^{\prime}\left(r e s p . \lambda \cdot v^{\prime} \in V^{\prime}\right)$. In this case, we define

$$
+\left.\right|_{V^{\prime}}: V^{\prime} \times V^{\prime} \rightarrow V^{\prime}
$$

(resp. $\left.\left.\cdot\right|_{V^{\prime}}: K \times V^{\prime} \rightarrow V^{\prime}\right)$ to be the map given by $v_{1}^{\prime}+\left.\right|_{V^{\prime}} v_{2}^{\prime}=v_{1}^{\prime}+v_{2}^{\prime}\left(\right.$ resp. $\left.\lambda \cdot\right|_{V^{\prime}} v^{\prime}=$ $\left.\lambda \cdot v^{\prime}\right)$, for all $v_{1}^{\prime}, v_{2}^{\prime} \in V^{\prime}$ (resp. for all $\lambda \in K$ and all $v^{\prime} \in V^{\prime}$).

REMARK 6.2.11. Note that if $\left(V^{\prime},+^{\prime}, \cdot^{\prime}\right)$ is a sub- K-vector space of $(V,+, \cdot)$, then V^{\prime} is closed under + and \cdot.

Exercise 6.2.12. Show that if a non-empty subset $V^{\prime} \subseteq V$ is closed under + and \cdot, then $\left(V^{\prime},+\left.\right|_{V^{\prime}},\left.\cdot\right|_{V^{\prime}}\right)$ is a sub-K-vector space of $(V,+, \cdot)$.

In other words, in the end, we tend to view a sub-K-vector space

$$
\left(V^{\prime},+^{\prime}, .^{\prime}\right) \subseteq(V,+, \cdot)
$$

as a subset $V^{\prime} \subseteq V$ that is closed under + and \cdot.
Exercise 6.2.13. Show that if $\left(V^{\prime},+^{\prime},,^{\prime}\right)$ is a sub-K-vector space of a K-vector space $(V,+, \cdot)$, then the additive identity element $\mathscr{O}^{\prime} \in V^{\prime}$ is equal to the additive identity element $\mathscr{O} \in V$.

Exercise 6.2.14. Recall the \mathbb{R}-vector space $(\operatorname{Map}(\mathbb{R}, \mathbb{R}),+, \cdot)$ from Exercise 6.1.8. In this exercise, show that the subsets of $\operatorname{Map}(\mathbb{R}, \mathbb{R})$ listed below are closed under + and \cdot, and so define sub- \mathbb{R}-vector spaces of $(\operatorname{Map}(\mathbb{R}, \mathbb{R}),+, \cdot)$.
(1) The set of all polynomial functions.
(2) The set of all polynomial functions of degree less than n.
(3) The set of all functions that are continuos on an interval $(a, b) \subseteq \mathbb{R}$.
(4) The set of all functions differentiable at a point $a \in \mathbb{R}$.
(5) The set of all functions differentiable on an interval $(a, b) \subseteq \mathbb{R}$.
(6) The set of all functions with $f(1)=0$.
(7) The set of all solutions to the differential equation $f^{\prime \prime}+a f^{\prime}+b f=0$ for some $a, b \in \mathbb{R}$.

Exercise 6.2.15. In this exercise, show that the subsets of $\operatorname{Map}(\mathbb{R}, \mathbb{R})$ listed below are NOT closed under + and \cdot, and so do not define sub- \mathbb{R}-vector spaces of $(\operatorname{Map}(\mathbb{R}, \mathbb{R}),+, \cdot)$.
(1) Fix $a \in \mathbb{R}$ with $a \neq 0$. The set of all functions with $f(1)=a$.
(2) The set of all solutions to the differential equation $f^{\prime \prime}+a f^{\prime}+b f=c$ for some $a, b, c \in \mathbb{R}$ with $c \neq 0$.

3. Linear maps

Definition 6.3.16 (Linear map). Let $(V,+, \cdot)$ and $\left(V^{\prime},+^{\prime}, \cdot^{\prime}\right)$ be K-vector spaces. A linear map $F:(V,+, \cdot) \rightarrow\left(V^{\prime},+^{\prime}, \cdot^{\prime}\right)$ is a map of sets

$$
f: V \rightarrow V^{\prime}
$$

such that for all $\lambda \in K$ and $v, v_{1}, v_{2} \in V$,

$$
f\left(v_{1}+v_{2}\right)=f\left(v_{1}\right)+^{\prime} f\left(v_{2}\right) \text { and } f(\lambda \cdot v)=\lambda \cdot^{\prime} f(v) .
$$

Note that we will frequently use the same letter for the linear map and the map of sets. The K-vector space $(V,+, \cdot)$ is called the source (or domain) of the linear map and the K-vector space $\left(V^{\prime},+^{\prime}, \cdot^{\prime}\right)$ is called the target (or codomain) of the linear map. The set $f(V) \subseteq V^{\prime}$ is called the image (or range) of f.
Exercise 6.3.17. Let $f:(V,+, \cdot) \rightarrow\left(V^{\prime},+^{\prime},,^{\prime}\right)$ be a linear map of K-vector spaces. Show that the image of f is closed under $+^{\prime}, .^{\prime}$, and so defines a sub-K-vector space of the $\operatorname{target}\left(V^{\prime},+^{\prime}, .^{\prime}\right)$.
Exercise 6.3.18. Let $f:(V,+, \cdot) \rightarrow\left(V^{\prime},+^{\prime},,^{\prime}\right)$ be a linear map of K-vector spaces. Show that $f(\mathscr{O})=\mathscr{O}^{\prime}$.

Exercise 6.3.19. Show that the following maps of sets define linear maps of the K-vector spaces.
(1) Let $(V,+, \cdot)$ be a K-vector space. Show that the identity map $f: V \rightarrow V$, given by $f(v)=v$ for all $v \in V$, is a linear map. This linear map will frequently be denoted by Id_{V}.
(2) Let $(V,+, \cdot)$ and $\left(V^{\prime},+^{\prime}, \cdot^{\prime}\right)$ be K-vector spaces. Show that the zero map f : $V \rightarrow V^{\prime}$, given by $f(v)=\mathscr{O}^{\prime}$ for all $v \in V$, is a linear map.
(3) Let $(V,+, \cdot)$ be a K-vector space and let $\alpha \in K$. Show that the multiplication map $f: V \rightarrow V$ given by $f(v)=\alpha \cdot v$ for all $v \in V$ is a linear map. This linear map will frequently be denoted by $\alpha \operatorname{Id}_{V}$.
(4) Let $a_{i j} \in K$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. Show that the map $f: K^{n} \rightarrow K^{m}$ given by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{j=1}^{n} a_{1 j} x_{j}, \ldots, \sum_{j=1}^{n} a_{i j} x_{j}, \ldots, \sum_{j=1}^{n} a_{m j} x_{j}\right)
$$

is a linear map.
(5) Let $(V,+, \cdot)$ be the \mathbb{R}-vector space of all differentiable real functions $g: \mathbb{R} \rightarrow \mathbb{R}$. Let $\left(V^{\prime},{ }^{\prime}{ }^{\prime}, .^{\prime}\right)$ be the \mathbb{R}-vector space of all real functions $g: \mathbb{R} \rightarrow \mathbb{R}$. Show that the map $f:(V,+, \cdot) \rightarrow\left(V^{\prime},+^{\prime},^{\prime}\right)$ that sends a differentiable function g to its derivative g^{\prime} is a linear map.
(6) Let $(V,+, \cdot)$ be the \mathbb{R}-vector space of all continuous real functions $g: \mathbb{R} \rightarrow \mathbb{R}$. Show that the map $f:(V,+, \cdot) \rightarrow(V,+, \cdot)$ that sends a function $g \in V$ to the function $f(g) \in V$ determined by

$$
f(g)(x):=\int_{a}^{x} g(t) d t \text { for all } x \in \mathbb{R}
$$

is a linear map. Make sure to show that $f(g) \in V$ for all $g \in V$.

Definition 6.3.20 (Kernel). Let $f:(V,+, \cdot) \rightarrow\left(V^{\prime},+^{\prime}, \cdot^{\prime}\right)$ be a linear map of K-vector spaces. The kernel of f (or Null space of f), denoted $\operatorname{ker}(f)$ (or $\operatorname{Null}(f)$), is the set

$$
\operatorname{ker}(f):=f^{-1}\left(\mathscr{O}^{\prime}\right)=\left\{v \in V: f(v)=\mathscr{O}^{\prime}\right\} .
$$

Exercise 6.3.21. Let $f:(V,+, \cdot) \rightarrow\left(V^{\prime},+^{\prime},,^{\prime}\right)$ be a linear map of K-vector spaces. Show that $\operatorname{ker}(f)$ is a sub-K-vector space of $(V,+, \cdot)$.
Exercise 6.3.22. Find the kernel of each of the linear maps listed below (see Problem 6.3.19).
(1) The linear map Id_{V}.
(2) The zero map $V \rightarrow V^{\prime}$.
(3) The linear map $\alpha \operatorname{Id}_{V}$.
(4) Let $a_{i j} \in K$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. The linear map $f: K^{n} \rightarrow K^{m}$ defined by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{j=1}^{n} a_{1 j} x_{j}, \ldots, \sum_{j=1}^{n} a_{i j} x_{j}, \ldots, \sum_{j=1}^{n} a_{m j} x_{j}\right) .
$$

(5) Let $(V,+, \cdot)$ be the \mathbb{R}-vector space of all differentiable real functions $g: \mathbb{R} \rightarrow \mathbb{R}$. Let $\left(V^{\prime},+^{\prime}, .^{\prime}\right)$ be the \mathbb{R}-vector space of all real functions $g: \mathbb{R} \rightarrow \mathbb{R}$. The linear map $f:(V,+, \cdot) \rightarrow\left(V^{\prime},+^{\prime},,^{\prime}\right)$ that sends a differentiable function g to its derivative g^{\prime}.
(6) Let $(V,+, \cdot)$ be the \mathbb{R}-vector space of all continous real functions $g: \mathbb{R} \rightarrow \mathbb{R}$. Let $a \in \mathbb{R}$. The linear map $f:(V,+, \cdot) \rightarrow(V,+, \cdot)$ that sends a function $g \in V$ to the function $f(g) \in V$ determined by

$$
f(g)(x):=\int_{a}^{x} g(t) d t \text { for all } x \in \mathbb{R}
$$

Exercise 6.3.23. Show that the composition of linear maps is a linear map.
Definition 6.3.24 (Isomorphism). Let $f:(V,+, \cdot) \rightarrow\left(V^{\prime},+^{\prime}, \cdot^{\prime}\right)$ be a linear map of K-vector spaces. We say that f is an isomorphism of K-vector spaces if there is a linear map $g:\left(V^{\prime},+^{\prime}, \cdot^{\prime}\right) \rightarrow(V,+, \cdot)$ of K-vector spaces such that

$$
g \circ f=\operatorname{Id}_{V} \quad \text { and } \quad f \circ g=\operatorname{Id}_{V^{\prime}}
$$

Exercise 6.3.25. Show that a linear map is an isomorphism if and only if it is bijective.

4. Bases and dimension

4.1. Linear maps determined by elements of a vector space. The basic example we are interested in is the following. Let V be a K-vector space. We fix

$$
\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right) \in V^{n}
$$

From this we obtain a map

$$
\begin{aligned}
L_{\mathbf{v}}: K^{n} & \rightarrow V \\
\left(a_{1}, \ldots, a_{n}\right) & \mapsto \sum_{i=1}^{n} a_{i} v_{i} .
\end{aligned}
$$

Exercise 6.4.26. Show that $L_{\mathbf{v}}$ is a linear map.
4.2. Span, linear independence, and bases. For every permutation $\sigma \in \Sigma_{n}$, the symmetric group on n-letters, we set

$$
\mathbf{v}^{\sigma}:=\left(v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right)
$$

Definition 6.4.27. Let V be a K-vector space, and let $v_{1}, \ldots, v_{n} \in V$. Set $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$. We say:
(1) The elements v_{1}, \ldots, v_{n} span V (or generate V) if for every $\sigma \in \Sigma_{n}$, the linear map $L_{\mathbf{v}^{\sigma}}$ is surjective.
(2) The elements v_{1}, \ldots, v_{n} are linearly independent if for every $\sigma \in \Sigma_{n}$, the linear map $L_{\mathbf{v}^{\sigma}}$ is injective.
(3) The elements v_{1}, \ldots, v_{n} are a basis for V if for every $\sigma \in \Sigma_{n}$, the linear map $L_{\mathbf{v}^{\sigma}}$ is an isomorphism.

Exercise 6.4.28. Let V be a K-vector space, and let $v_{1}, \ldots, v_{n} \in V$. Set $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$.
(1) The elements v_{1}, \ldots, v_{n} span V (or generate V) if for any $\sigma \in \Sigma_{n}$, the linear map $L_{\mathbf{v}^{\sigma}}$ is surjective.
(2) The elements v_{1}, \ldots, v_{n} are linearly independent if for any $\sigma \in \Sigma_{n}$, the linear map $L_{\mathbf{v}^{\sigma}}$ is injective.
(3) The elements v_{1}, \ldots, v_{n} are a basis for V if for any $\sigma \in \Sigma_{n}$, the linear map $L_{\mathbf{v}^{\sigma}}$ is an isomorphism.

Exercise 6.4.29. Let V be a K-vector space, and let $v_{1}, \ldots, v_{n} \in V$.
(1) The elements v_{1}, \ldots, v_{n} span V (or generate V) if for any $v \in V$, there exists $\left(a_{1}, \ldots, a_{n}\right) \in K^{n}$ such that $\sum_{i=1}^{n} a_{i} v_{i}=v$.
(2) The elements v_{1}, \ldots, v_{n} are linearly independent if whenever $\left(a_{1}, \ldots, a_{n}\right) \in$ K^{n} and $\sum_{i=1}^{n} a_{i} v_{i}=0$, we have $\left(a_{1}, \ldots, a_{n}\right)=0$.
(3) The elements v_{1}, \ldots, v_{n} are a basis for V if they span V and are linearly independent.
4.3. Dimension. We start with the following motivational exercise:

Exercise 6.4.30. If $K^{n} \cong K^{m}$, then $n=m$.
Definition 6.4.31. A K-vector space V is said to be of dimension n if there is an isomorphism $V \cong K^{n}$.

Exercise 6.4.32. Show that a K-vector space V has dimension n if and only if it has a basis consisting of n elements.

5. Direct products of vector spaces

EXAMPLE 6.5.33. Suppose that $\left(V_{1},+_{1}, \cdot 1\right)$ and $\left(V_{2},+2, \cdot 2\right)$ are K-vector spaces. There is a K-vector space

$$
\left(V_{1},+1, \cdot 1\right) \times\left(V_{2},+2, \cdot 2\right):=\left(V_{1} \times V_{2},+, \cdot\right)
$$

where $V_{1} \times V_{2}$ is the product of the sets V_{1} and V_{2}, where

$$
+:\left(V_{1} \times V_{2}\right) \times\left(V_{1} \times V_{2}\right) \rightarrow V_{1} \times V_{2}
$$

is defined by

$$
\left(v_{1}, v_{2}\right)+\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=\left(v_{1}+{ }_{1} v_{1}^{\prime}, v_{2}+{ }_{2} v_{2}^{\prime}\right)
$$

and

$$
\cdot: K \times\left(V_{1} \times V_{2}\right) \rightarrow V_{1} \times V_{2}
$$

is defined by

$$
\lambda \cdot\left(v_{1}, v_{2}\right)=\left(\lambda \cdot v_{1}, \lambda \cdot 2 v_{2}\right)
$$

Exercise 6.5.34. Show that the triple $\left(V_{1},+1, \cdot 1\right) \times\left(V_{2},+2, \cdot{ }_{2}\right):=\left(V_{1} \times V_{2},+, \cdot\right)$ in the example above is a K-vector space.
Definition 6.5.35 (Direct product). Suppose that $\left(V_{1},+1, \cdot 1\right)$ and $\left(V_{2},+2, \cdot 2\right)$ are Kvector spaces. We define the direct product of $\left(V_{1},+1, \cdot 1\right)$ and $\left(V_{2},+2, \cdot 2\right)$, written $\left(V_{1},+_{1}, \cdot 1\right) \times\left(V_{2},+2, \cdot 2\right)$, to be the K-vector space $\left(V_{1} \times V_{2},+, \cdot\right)$ defined above.

Exercise 6.5.36. Let V_{1} and V_{2} be K-vector spaces. Show the following:
(1) There is an injective linear map $i_{1}: V_{1} \rightarrow V_{1} \times V_{2}$ given by $v_{1} \mapsto\left(v_{1}, \mathscr{O}_{V_{2}}\right)$, and a surjective linear map $p_{1}: V_{1} \times V_{2} \rightarrow V_{1}$ given by $\left(v_{1}, v_{2}\right) \mapsto v_{1}$.
(2) There is an injective linear map $i_{2}: V_{1} \rightarrow V_{1} \times V_{2}$ given by $v_{2} \mapsto\left(\mathscr{O}_{V_{1}}, v_{2}\right)$, and a surjective linear map $p_{2}: V_{1} \times V_{2} \rightarrow V_{2}$ given by $\left(v_{1}, v_{2}\right) \mapsto v_{2}$.

6. Quotient vector spaces

Suppose that $(V,+, \cdot)$ is a K-vector space, and $W \subseteq V$ is a sub- K-vector space. Define an equivalence relation on V by the rule

$$
v_{1} \sim v_{2} \Longleftrightarrow v_{1}-v_{2} \in W
$$

Exercise 6.6.37. Show that this defines an equivalence relation on V.
Let V / W be the set of equivalence classes, and let

$$
\pi: V \longrightarrow V / W
$$

be the quotient map of sets. For any element $v \in V / W$, there is an element $v \in V$ such that $v=[v]$, where $[v]$ is the equivalence class of v.
Exercise 6.6.38. Let V be a K-vector space and suppose that $W \subseteq V$ is a sub-K-vector space.
(1) Suppose that $\left[v_{1}\right],\left[v_{2}\right] \in V / W$. Show that the rule

$$
\left[v_{1}\right]+\left[v_{2}\right]=\left[v_{1}+v_{2}\right]
$$

defines a map

$$
+: V / W \times V / W \rightarrow V / W
$$

(2) Suppose that $\lambda \in K$ and $[v] \in V / W$. Show that the rule

$$
\lambda \cdot[v]=[\lambda \cdot v]
$$

defines a map

$$
\cdot: K \times V / W \rightarrow V / W
$$

(3) Show that V / W is a K-vector space with + and \cdot defined as above.
(4) Show that $\pi: V \rightarrow V / W$ is a surjective linear map with kernel W.

Definition 6.6.39 (Quotient K-vector space). Let V be a K-vector space and let $W \subseteq V$ be a sub-K-vector space. The quotient (K-vector space) of V by W is the K-vector space V / W constructed above.

Exercise 6.6.40. Suppose that $\phi: V \rightarrow V^{\prime}$ is a surjective linear map of K-vector spaces.
(1) Show that $V^{\prime} \cong V / \operatorname{ker} \phi$.
(2) If V^{\prime} is finite dimensional, show that $V \cong(\operatorname{ker} \phi) \times V^{\prime}$.
(3) If V and V^{\prime} are finite dimensional, show that $\operatorname{dim} V=\operatorname{dim} V^{\prime}+\operatorname{dim}(\operatorname{ker} \phi)$.

7. Further exercises

Exercise 6.7.41. Find an example of a triple $(V,+, \cdot)$ satisfying all of the conditions of the definition of a K-vector space, except for condition (3)(d).
Exercise 6.7.42. Suppose that $L: K^{n} \rightarrow K^{m}$ is a linear map. For $j=1, \ldots, n$ define $e_{j}=(0, \ldots, 1, \ldots, 0) \in K^{n}$ to be the element with all entries 0 except for the j-th place, which is 1. Similarly, for $i=1, \ldots, m$ define $f_{i}^{\vee}: K^{m} \rightarrow K$ to be the linear map defined by $\left(y_{1}, \ldots, y_{m}\right) \mapsto y_{i}$. Show that L is the same as the linear map defined in Example 6.3.19(4) with the matrix $A \in \mathrm{M}_{m \times n}(K)$ defined by $A_{i j}=a_{i j}=f_{i}^{\vee}\left(L\left(e_{j}\right)\right)$.

CHAPTER 7

Reduced row echelon form of a matrix

1. Definitions

The reduced row echelon form of a given matrix is a special matrix obtained from the original matrix by taking linear combinations of the rows. These can be quite useful, for instance in giving a solution to the exercise that dimension is well-defined.
Definition 7.1.1 (Reduced row echelon form). A matrix is in reduced row echelon form if the following hold:

- All nonzero rows (rows with at least one nonzero element) are above any rows of all zeroes (i.e., all zero rows, if any, belong at the bottom of the matrix).
- The leading coefficient (the first nonzero number from the left, also called the pivot) of a nonzero row is always strictly to the right of the leading coefficient of the row above it.
- Every leading coefficient is 1 and is the only nonzero entry in its column.
$\left[\begin{array}{lllll}1 & 3 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4\end{array}\right]$

Figure 1. A matrix in reduced row echelon form

Definition 7.1.2 (Elementary row operations). Let A and B be matrices of the same size. We say that B is obtained from A by an elementary row operation if one of the following hold:
(1) B is obtained from A by interchanging two rows;
(2) B is obtained from A by multiplying a row of A by a nonzero scalar;
(3) B is obtained from A by adding a scalar multiple of one row of A to another.

We say that B is obtained from A by elementary row operations if there is a finite sequence of matrices $A=A_{0}, A_{1}, \ldots, A_{n}=B$, with A_{i+1} obtained from $A_{i}, i=1, \ldots, n-1$, by an elementary row operation.

Exercise 7.1.3. Given a matrix A show that there is a unique matrix that is in reduced row echelon form that can be obtained from A by elementary row operations. [Hint: use induction on the number of columns of A.]
Definition 7.1.4. The matrix obtained from A in the previous exercise is called the reduced row echelon form of A.

Exercise 7.1.5. Show that the rows of A are linearly dependent if and only if the reduced row echelon form of A has a zero row.

