Daily Quiz

- Go to Socrative.com and complete the quiz.
- Room Name: HONG5824
- Use your full name.

6.6 Moment and Center of Mass

- Have you tried balancing a frisbee on your fingertips?
- Where would you put your finger?
- The center of mass is where the object would be balanced horizontally.
- It is also where the net torque from gravity would be 0 .

6.6 Moment and Center of Mass

- Consider a seesaw as pictured.
- If two people are sitting on the opposite ends of the balanced seesaw each with mass m_{1} and m_{2} respectively, who has more mass?

- Archimedes discovered that in order for the seesaw to be balanced, the moments need to be the same in magnitude:

$$
\begin{aligned}
M_{1} & =M_{2} \\
m_{1} d_{1} & =m_{2} d_{2} .
\end{aligned}
$$

6.6 Moments and Centers of Mass

- Now suppose the two ends of the seesaw have x-coordinates x_{1} and x_{2}.

- Let's compute the x-coordinate of the fulcrum, the center of mass \bar{x}.

$$
\begin{aligned}
& m_{1} d_{1}=m_{2} d_{2} \\
& m_{1}\left(\bar{x}-x_{1}\right)=m_{2}\left(x_{2}-\bar{x}\right) \\
& m_{1} \bar{x}-m_{1} x_{1}=m_{2} x_{2}-m_{2} \bar{x} \\
& m_{1} \bar{x}+m_{2} \bar{x}=m_{1} x_{1}+m_{2} x_{2} \\
& \bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
\end{aligned}
$$

6.6 Moment and Center of Mass

- The numbers $m_{1} x_{1}$ and $m_{2} x_{2}$ are called the moments of the masses m_{1} and m_{2} with respect to a coordinate system.
- Note that x_{1} and x_{2} can be negative. This means that moments can be positive or negative depending on your choice of coordinate system.
https://phet.colorado.edu/en/simulation/balancing-act

6.6 Moment and Center of Mass

If we have a system of many particles with masses $m_{1}, m_{2}, \cdots, m_{n}$ located at the points $x_{1}, x_{2}, \cdots, x_{n}$ on the x-axis, then it can be shown similarly that the center of mass is located at

$$
\bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}}{m_{1}+m_{2}+\cdots+m_{n}}=\frac{\text { Sum of the moments }}{\text { Sum of the masses }}
$$

6.6 Moment and Center of Mass (2-dim)

The center of mass is located at (\bar{x}, \bar{y}). Let m be the total mass, $m=m_{1}+m_{2}+\cdots+m_{n}$.
moment of the system about the \boldsymbol{y}-axis

$$
\begin{aligned}
& M_{y}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n} \\
& \bar{x}=\frac{M_{y}}{m}=\frac{m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}}{m_{1}+m_{2}+\cdots+m_{n}}
\end{aligned}
$$

moment of the system about the \boldsymbol{x}-axis

$$
\begin{aligned}
& M_{x}=m_{1} y_{1}+m_{2} y_{2}+\cdots+m_{n} y_{n} \\
& \bar{y}=\frac{M_{x}}{m}=\frac{m_{1} y_{1}+m_{2} y_{2}+\cdots+m_{n} y_{n}}{m_{1}+m_{2}+\cdots+m_{n}}
\end{aligned}
$$

6.6 Moment and Center of Mass (2-dim)

Find the moments and center of mass of the system of objects that have masses 3,4 , and 8 at the points $(-1,1),(2,-1)$, and $(3,2)$.

$$
\begin{aligned}
& \bar{x}=\frac{M_{y}}{m}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}=\frac{-3+8+24}{3+4+8}=\frac{29}{15} \\
& \bar{y}=\frac{M_{x}}{m}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}}=\frac{3-4+16}{3+4+8}=\frac{15}{15}
\end{aligned}
$$

$$
M_{y}=29 \quad \text { The center of mass is located at }\left(\frac{29}{15}, 1\right)
$$

$$
M_{x}=15
$$

Suppose that a region of uniform density ρ is bounded by a function $y=f(x)$. How can we compute the center of mass of this region?

Suppose we take a rectangle of small width on the region \mathscr{R}. Intuitively, the center of mass of a rectangle is in the middle of the rectangle with coordinates $(x, f(x) / 2)$. Now we can pretend that the entire mass of the rectangle is located at $(x, f(x) / 2)$ and compute our moments with respect to the y and the x axis.

Firstly, the area of the rectangle is $f(x) d x$ and so the mass of the rectangle is $\rho f(x) d x$.

Let \mathcal{M}_{y} denote the moment of the small rectangle about the y-axis and \mathcal{M}_{x} denote the moment of the small rectangle about the x-axis. Then

$$
\begin{aligned}
& \mathcal{M}_{y}=\text { mass } \cdot \text { distance to the y-axis }=\rho f(x) d x \cdot x \\
& \mathcal{M}_{x}=\text { mass } \cdot \text { distance to the x-axis }=\rho f(x) d x \cdot f(x) / 2
\end{aligned}
$$

We have computed the moments of an arbitrary slice of rectangle on the region \mathscr{R}. Then the total moment of \mathscr{R} about the y-axis is obtained by adding up slices' moments.

$$
M_{y}=\int \mathcal{M}_{y}=\rho \int_{a}^{b} x f(x) d x
$$

Similarly, the moment of \mathscr{R} about the x-axis is

$$
M_{x}=\int \mathcal{M}_{x}=\rho \int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x
$$

Now let's compute the mass of the region \mathscr{R}. Since the region has a uniform density, the mass of \mathscr{R} is equal to the area of \mathscr{R} times the density ρ.

$$
m=\rho A=\rho \int_{a}^{b} f(x) d x
$$

Formulas

Moment about the y-axis:
Moment about the x-axis:

$$
M_{y}=\rho \int_{a}^{b} x f(x) d x \quad M_{x}=\rho \int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x
$$

The center of mass of a region \mathscr{R} is located at (\bar{x}, \bar{y}) and

$$
\begin{gathered}
\bar{x}=\frac{M_{y}}{m}=\frac{\rho \int_{a}^{b} x f(x) d x}{\rho \int_{a}^{b} f(x) d x}=\frac{\int_{a}^{b} x f(x) d x}{\int_{a}^{b} f(x) d x}=\frac{1}{A} \int_{a}^{b} x f(x) d x \\
\bar{y}=\frac{M_{x}}{m}=\frac{\rho \int_{a}^{b} \frac{1}{2}[f(x) d x]^{2}}{\rho \int_{a}^{b} f(x) d x}=\frac{\int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x}{\int_{a}^{b} f(x) d x}=\frac{1}{A} \int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x
\end{gathered}
$$

where $A=\int_{a}^{b} f(x) d x$.
6.6 Moment and Center of Mass (2-dim)

EXAMPLE 7 Find the center of mass of a semicircular plate of radius r.
Area is $\frac{1}{2} \pi r^{2}$.
Since the equation of a circle is $x^{2}+y^{2}=r^{2}$,
 the top half of the circle can be obtained from the positive square sot when solving for y.
Top half: $y=\sqrt{r^{2}-x^{2}}$
Bottom half: $y=-\sqrt{r^{2}-x^{2}}$
semicircle is top half. $f(x)=y=\sqrt{r^{2}-x^{2}}$
6.6 Moment and Center of Mass (2-dim)

EXAMPLE 7 Find the center of mass of a semicircular plate of radius r.
using the formulas

$$
\bar{x}=\frac{1}{A} \int_{a}^{b} x f(x) d x=\frac{1}{\frac{1}{2} \pi r^{2}} \int_{-r}^{r} x \sqrt{r^{2}-x^{2}} d x
$$

Using u-sub

$$
\begin{aligned}
& \text { Using } u-\operatorname{sun} b \\
& u=r^{2}-x^{2}
\end{aligned} \frac{2}{\pi r^{2}} \int_{0}^{0} \sqrt{u} \frac{d u}{-2}
$$

$$
d u=-2 x d x
$$

Observe that the new u-bounds are both 0 since $u=r^{2}-r^{2}=0$ and $u=r^{2}-(-r)^{2}=0$. Since an integral over an interval of no width is 0 , the above integral is 0 .

Hence $\frac{2}{\pi r^{2}} \int_{-r}^{r} x \sqrt{r^{2}-x^{2}} d x=0$. This makes intuitive sense since the object in question is symmetric across the y-axis.

$$
\bar{x}=0
$$

6.6 Moment and Center of Mass (2-dim)

EXAMPLE 7 Find the center of mass of a semicircular plate of radius r. To compute $\bar{y}, \quad \bar{y}=\frac{1}{A} \int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x=\frac{1}{\frac{\pi r^{2}}{2}} \cdot \frac{1}{2} \int_{-r}^{r} r^{2}-x^{2} d x$
$=\frac{1}{\pi r^{2}}\left[r^{2} x-\frac{x^{3}}{3}\right]_{-r}^{r}=\frac{1}{\pi r^{2}}\left[\left(r^{3}-\frac{r^{3}}{3}\right)-\left(-r^{3}+\frac{r^{3}}{3}\right)\right]$
$=\frac{1}{\pi r^{2}} \frac{4}{3} r^{3}=\frac{4 r}{3 \pi}$.
So $\bar{y}=\frac{4 r}{3 \pi}$
center of mass $=(\bar{x}, \bar{y})=\left(0, \frac{4 r}{3 \pi}\right)$
6.6 Moment and Center of Mass (2-dim)

Find the center of mass of a region bounded by $y=x(x-2)^{2}$ and the x-axis.

$$
\text { Area }=\int_{0}^{2} x(x-2)^{2} d x=\int_{0}^{2} x\left(x^{2}-4 x+4\right) d x
$$

$$
\begin{aligned}
& =\left[\frac{x^{4}}{4}-\frac{4 x^{3}}{3}+2 x^{2}\right]_{0}^{2} \\
& =\left[\left(\frac{16}{4}-\frac{4}{3}(8)+8\right)-0\right] \\
A & =\frac{4}{3}
\end{aligned}
$$

$$
=\frac{3}{4} \int_{0}^{2} x^{4}-4 x^{3}+4 x^{2} d x
$$

$$
=\frac{3}{4}\left[\frac{32}{5}-16+\frac{32}{3}\right]=\frac{3}{4}\left[\frac{256}{15}-\frac{240}{15}\right]=\frac{4}{5}
$$

$$
=\frac{3}{4}\left[\frac{x^{5}}{5}-x^{4}+\frac{4}{3} x^{3}\right]_{0}^{2}
$$

6.6 Moment and Center of Mass (2-dim)

Find the center of mass of a region bounded by $y=x(x-2)^{2}$ and the x-axis.

$$
\begin{aligned}
\bar{y} & =\frac{1}{A} \int_{d}^{6} \frac{1}{2}[f(x)]^{2} d x=\frac{3}{4} \cdot \frac{1}{2} \int_{0}^{2} x^{2}(x-2)^{4} d x \\
& =\frac{3}{8} \int_{0}^{2} x^{2}\left(x^{4}+4(-2) x^{3}+6(-2)^{2} x^{2}+4(-2)^{3} x+(6) d x\right. \\
& =\frac{3}{8} \int_{0}^{2} x^{6}-8 x^{5}+24 x^{4}-32 x^{3}+16 x^{2} d x \\
& =\frac{3}{8}\left[\frac{x^{7}}{7}-\frac{8}{6} x^{6}+\frac{24}{5} x^{5}-\frac{32}{4} x^{4}+\frac{16 x^{3}}{3}\right]_{0}^{2} \text { center of } \\
& =\frac{16}{35}
\end{aligned}
$$

$$
\text { center of mass }=(\bar{x}, \bar{y})
$$

