Daily Quiz

- Go to Socrative.com and complete the quiz.
- Room Name: HONG5824
- Use your full name.

6.3 Volumes by Cylindrical Shells

- Using cross-sections requires us to solve for x or y .
- What if we can't solve for the other variable?
- Can we solve for x with the given function below?

$$
y=2 x^{2}-x^{3}
$$

6.3 Cylindrical Shells
$\rho_{2}=$ big radius $\Delta r=\rho_{2}-\rho_{1}$
$P_{1}=$ small radius

$$
r=\frac{\rho_{1}+\rho_{2}}{2}=\text { average radius }
$$

volume of the hollow shell

$$
\begin{aligned}
& =\pi \rho_{2}^{2} h-\pi \rho_{1}^{2} h \\
& =\pi h\left(\rho_{2}^{2}-\rho_{1}^{2}\right) \\
& =\pi h\left(\rho_{2}+\rho_{1}\right)\left(\rho_{2}-\rho_{1}\right) \\
& =2 \pi h\left(\frac{\rho_{2}+\rho_{1}}{2}\right)\left(\rho_{2}-\rho_{1}\right)
\end{aligned}
$$

$$
=2 \pi r h, \Delta r
$$

Surface area thickness of the shell

6.3 Volumes by Cylindrical Shells

- Instead of cutting slices, let's peel one layer at a time like with onions.

$$
V \approx \sum_{\sum_{i=1}^{n}}^{\begin{array}{c}
\text { Surface area of the shell } \\
S A\left(x_{i}\right) \\
\underbrace{\triangle x}_{\text {thickness }}
\end{array} V=\int_{\text {integral }}^{\int_{a}^{b}} \overbrace{S A_{x}}^{\begin{array}{c}
\text { surface area of the } \\
\text { shell }
\end{array}} \underbrace{d x}_{\text {thickness }}}
$$

6.3 Volume by Cylindrical Shells

Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$.

$$
\begin{aligned}
& \text { Total volume }=\int_{0}^{2} 2 \pi x y d x \\
& =2 \pi \int_{0}^{2} x y d x=2 \pi \int_{0}^{2} x\left(2 x^{2}-x^{3}\right) d x=2 \pi \int_{0}^{2} 2 x^{3}-x^{4} d x
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi\left[\frac{2 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{2} \\
& =2 \pi\left[\frac{16}{2}-\frac{32}{5}\right] \\
& =\frac{16 \pi}{5}
\end{aligned}
$$

6.3 Volume by Cylindrical Shells

Find the volume of the solid obtained by rotating about the y-axis the region between $y=x$ and $y=x^{2}$.

$$
\begin{aligned}
& \text { height }=y_{1}-y_{2} \\
& \text { radius }=x \\
& \text { surface area }=2 \pi x\left(y_{1}-y_{2}\right) \\
& \text { volume of shell }=2 \pi x\left(y_{1}-y_{2}\right) d x
\end{aligned}
$$

Total volume $=\int_{0}^{1} 2 \pi x\left(y_{1}-y_{2}\right) d x=2 \pi \int_{0}^{1} x\left(x-x^{2}\right) d x=2 \pi \int_{0}^{1} x^{2}-x^{3} d x$

$$
=2 \pi\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1}=2 \pi\left[\frac{1}{3}-\frac{1}{4}\right]=\frac{\pi}{6}
$$

6.3 Volume by Cylindrical Shells

Use cylindrical shells to find the volume of the solid obtained by rotating about the x-axis the region under the curve $y=\sqrt{x}$ from 0 to 1 .

 height $=1-x$
radius $=y$
surface area $=2 \pi y(1-x)$ volume of shell $=2 \pi y(1-x) d y$

Total volume $=\int_{0}^{1} 2 \pi y(1-x) d y=2 \pi \int_{0}^{1} y\left(1-y^{2}\right) d y=2 \pi \int_{0}^{1} y-y^{3} d y$

$$
=2 \pi\left[\frac{y^{2}}{2}-\frac{y^{4}}{4}\right]_{0}^{1}=2 \pi\left[\frac{1}{2}-\frac{1}{4}\right]=\frac{\pi}{2}
$$

6.3 Volume by Cylindrical Shells

Find the volume of the solid obtained by rotating the region bounded by $y=x-x^{2}$ and $y=0$ about the line $x=2 \cdot x=2$

$$
\begin{aligned}
& \text { height }=y \\
& \text { radius }=2-x
\end{aligned}
$$

Surface area $=2 \pi(2-x) y$
volume of shell $=2 \pi(2-x) y d x$

$$
\begin{aligned}
& \text { Total volume }=\int_{0}^{1} 2 \pi(2-x) y d x=2 \pi \int_{0}^{1}(2-x)\left(x-x^{2}\right) d x \\
& =2 \pi \int_{0}^{1} 2 x-x^{2}-2 x^{2}+x^{3} d x=2 \pi \int_{0}^{1} 2 x-3 x^{2}+x^{3} d x=2 \pi\left[x^{2}-x^{3}+\frac{x^{4}}{4}\right]_{0}^{1} \\
& =2 \pi\left[1-1+\frac{1}{4}\right]=\frac{\pi}{2}
\end{aligned}
$$

- For the disk/washer method, the cuts are perpendicular to the axis of rotation. (Example: y-axis is the axis of rotation.)

- For the shell method, the cuts are parallel to the axis of rotation. (Example: y-axis is the axis of rotation.)

