Daily Quiz

* Go to Socrative.com and complete the quiz.
* Room Name: HONG5824

* Use your full name.
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5.8 Tables of Integrals and Computer Algebra Systems

Tables of indefinite integrals are very useful when we are confronted by an
integral that is difficult to evaluate by hand and we don’t have access to a com-
puter algebra system (Wolfram Alpha, Mathematica, etc.).

Note that all of the formulas in the Tables of Integrals can be derived from
techniques such as substitution, integration by parts, trig sub, and partial frac-

tions.

We will explore how we can use Tables of Integrals to compute messy integrals.
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5.8 Tables of Integrals
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Use the Table of Integrals to find / da.




Use the Table of Integrals to find a:\/a:2 + 2z 4+ 4 dzx.
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5.1 The Area Problem

We begin by attempting to solve the area problem: Find the area of the
region S that lies under the curve y = f(x) from a to b.

VA
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It isn’t easy to find the area of a region with curved sides; however, we can
approximate the area using rectangles. Let z1,x9,x3, - - denote the equally
spaced z-coordinates along the base. Then the height of each rectangle is given
by the function f(z;) while the width of each rectangle is given by the quantity

b—
N = ®  This means each rectangle’s area is height-width= f(x;) Ax. If

n
we have n rectangles, then the area under the curve is approximately

f(x) Az + f(z2) Az + - + f(zn) Az,

We call the above sum a Riemann sum.
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Notice that this approximation appears to become better and better as the

number of rectangles increases, that is, as n — oc.
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Therefore we define the area A under the graph of the function f as the
limit of the sum of the areas of rectangles as we take the number of rectangles

to infinity:
A= lim [f(x1)Az + f(z2)Az + - - + f(zn)Az]

n—o

This gives us the definition of the definite integral:

b
/ f(x) do = nh_)rgo[f(:vl)A:E + f(x2)Ax + -+ + f(xn)Ax]

b —
given that Ax = N
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5.9 Approximate Integration

When do we need to approximate integrals?
* Finding the exact value can be costly — time, energy.
* Not every function has an antiderivative.

* For example, consider the integral below:

1 2
/ e v dx
0

: 2 Cy . : :
The function e™* has no antiderivative but we can still approximate the
area under the curve using Riemann sums.
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5.9 Approximate Integration

How do we approximate integrals?

* To simplify things, we are often given either a formula or a table of
values.

* For example, the data collected from instrument readings during
scientific experiments gives us a table of values.

* We use Riemann sums to approximate our integral.

b n
[ 1@ dom 3 f@)b = f@)Ba + fw2) Do+ -+ f(a)ba
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5 Types of Riemann Sums

Let n denote the number of rectangles used in the approximation. For each

method, the rectangles are evenly spaced. g = a, xz,, = b, and Ax =

1

b—a
—

Left endpoint: L,, uses the left-most x-coordinate of each subinterval to
find the height of each rectangle.

. Right endpoint: R,, uses the right-most z-coordinate of each subinterval

to find the height of each rectangle.

Midpoint: M,, uses the middle z-coordinate of each subinterval to find
the height of each rectangle.

. Trapezoidal (average height): T,, uses the average of the heights from the

Left endpoint and the Right endpoint to find the height of each rectangle.

. Simpson’s Rule (parabolic): 5, uses sections of parabolas to estimate the

areas.
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1. Left endpoint Approximation

b
/ f(x)dz =~ Ly = f(xo) Az + f(z1) Az + f(z2) Az + f(23) A VA

Choose the left-most z-coordinate in each subinterval
to sample the height.
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(a) Left endpoint approximation



2. Right endpoint Approximation

b
f f(@)dz ~ Ry = f(z1)Az + f(z2) Az + f(z3) Az + f(z4) AT Y A

Choose the right-most z-coordinate in each subinterval ‘F("‘ﬁ)
to sample the height.

=Y

Ol x, X X X3 Xy

(b) Right endpoint approximation
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3. Midpoint Approximation

b
f f(x)dr =~ My = f(Z1) Az + f(T2) Az + f(T3) Az + f(T4) Az

Choose the middle z-coordinate in each subinterval
to sample the height.
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4. Trapezoidal Approximation — Average height
[ @z = T = S (a0) + 20 (@1) + 2 (a2) + 24 (a5) + f @)

Average the heights from the left endpoint
and the right endpoint.
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5. Simpson’s Rule — Sections of Parabolas

For Simpson’s Rule, we create one parabolic rectangle using two consecu-
tive subintervals; in other words, if there are n subintervals, then we have 5

rectangles. Therefore n must be even; otherwise, we can’t use Simpson’s Rule.

b
/ f(z)dr = Sg = %[f(ﬂﬂo)+4f(931)+2f($2)+4f($3)+2f($4)+4f(935)+f($6)]
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5.9 Approximate Integration

* Left endpoint, right endpoint, midpoint, trapezoidal methods, and
Simpson’s Rule are all used to approximate integrals.

* Since these are approximations, they are off by some error from the
true value.

* How do we control the error to guarantee accuracy?
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5.9 Approximate Integration

3| Error Bounds Suppose | f"(x)| < K for a < x < b. If Er and E), are the errors
in the Trapezoidal and Midpoint Rules, then

Kb — a)’
IET| = (12n2a) and |EM| =
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3
Example 1: If we use the trapezoidal approximation with n = 10 to estimate / 23 dzx, how accurate

1
are we guaranteed to be? (If you want, make a guess before you do the calculation.)
fla) = a®
f'(z) =_3X

fa) =X
On [1 3], [f(z)] < |g K because ‘F/ ! IV\C\{,&SIr\q on ’H‘LIVII'CYW\‘ [’33 o we Fl\dj

k(b—a)®  18(-1® " He  vight-mert X~ Valve .

So, |Er| < \ % - \2 (lo)z (Is this more or less accurate than you guessed?)
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1
Example 2: If we use the midpoint approximation with n = 20 to estimate / sin(2z) dz, how
0

accurate are we guaranteed to be?
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Example 3: How large should n be to

error no larger than 0.0017

1
guarantee that using T;, to estimate / e 3% dr gives an
0
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5.9 Approximate Integration

Simpson’s Rule (Using parabolas to approximate)

4] Error Bound for Simpson's Rule Suppose that | f*(x)| < K fora < x < b. If Es
1s the error involved in using Simpson’s Rule, then
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Example 4: How large should n be to guarantee that using the Simpson’s

1
Rule §,, to estimate / e % dx gives an error no larger than 0.0017
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