## Exam 2 Review Handout

1. Sequences

A sequence $\left\{a_{n}\right\}$ is a list of numbers written in a definite order:

$$
a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots
$$

## Give an example or two:

Convergence and divergence of mathematical objects like sequences and series is about whether the limit exists or doesn't exist.
2. The Geometric Sequence

The sequence $a_{n}=r^{n}$ is convergent if $-1<r \leq 1$ and divergent for all other values of $r$.

$$
\lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{cc}
0 & \text { if }-1<r<1 \\
1 & \text { if } r=1
\end{array}\right.
$$

## Give an example or two:

3. The Squeeze Theorem

If $a_{n} \leq b_{n} \leq c_{n}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.

If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

## Give an example or two:

1. Series

Given a sequence $\left\{a_{n}\right\}$, a finite sum

$$
s_{m}=\sum_{n=1}^{m} a_{n}=a_{1}+a_{2}+\cdots+a_{m}
$$

is called the $m$-th partial sum $s_{m}$.

A series is an infinite sum of the sequence $a_{n}$, where

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{m \rightarrow \infty} \sum_{n=1}^{m} a_{n}=\lim _{m \rightarrow \infty} s_{m}=s
$$

If the above limit exists, we say that the series converges and if the above limit doesn't exist, then we say that the series diverges.

## Give an example or two:

A series $\sum_{n=1}^{\infty} a_{n}$ is called absolutely convergent if the series of absolute values $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent.

## Give an example or two:

A series $\sum_{n=1}^{\infty} a_{n}$ is called conditionally convergent if it is not absolutely convergent but still converges.

## Give an example or two:

If a series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, then it is convergent.

## Give an example or two:

## 2. Geometric Series

The geometric series

$$
\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+\cdots
$$

is convergent if $|r|<1$ and its sum is

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}
$$

If $|r| \geq 1$, the geometric series is divergent.

## Give an example or two:

3. Telescoping Sums

With some algebra, a series can be broken down into a sum of a difference

$$
\sum_{n=1}^{\infty}\left(a_{n}-a_{n+1}\right)
$$

where cancellation happens in the partial sum

$$
\sum_{n=1}^{m} a_{n}-a_{n+1}=\left(a_{1}-a_{2}\right)+\left(a_{2}-a_{3}\right)+\left(a_{3}-a_{4}\right)+\cdots+\left(a_{m}-a_{m+1}\right)=a_{1}-a_{m+1}
$$

Take the limit of the partial sums as $m \rightarrow \infty$ to determine convergence.

## Give an example or two:

4. The $p$-series and the $p$-test

The $p$-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if $p>1$ and divergent if $p \leq 1$.

## Give an example or two:

## 5. Divergence Test

If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

## Give an example or two:

6. Convergent series must have vanishing terms at infinity.

If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.

## Give an example or two:

## 7. Integral Test

Let $\sum_{n=1}^{\infty} a_{n}$ be a series with positive terms and let $f(n)=a_{n}$. Suppose $f$ is a continuous, positive, decreasing function on $[1, \infty)$.
(a) If $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

## Give an example or two:

## 8. Direct Comparison Test.

Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with $0 \leq a_{n} \leq b_{n}$ for all $n$. Then

$$
0 \leq \sum_{n=1}^{\infty} a_{n} \leq \sum_{n=1}^{\infty} b_{n}
$$

and
(a) If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.

To use either of the comparison tests, we need to compare our messy-looking series to another series that we already understand. Below are the series that we understand so far:
(a) A geometric series ( $a$ and $r$ are constants)

$$
\sum_{n=0}^{\infty} a r^{n}
$$

(b) A $p$-series ( $p$ is a constant)

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

(c) A series that looks similar to an improper integral that can be solved using u-sub or other integration techniques

$$
\sum_{n=2}^{\infty} \frac{1}{n \ln n} \approx \int_{2}^{\infty} \frac{1}{x \ln x} d x
$$

## Give an example or two:

## 9. Limit Comparison Test

Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.
If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists and is non-zero, then either both series converge or both series diverge.

## Give an example or two:

## 10. Alternating Series Test

Suppose $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ is an alternating series. If
(a) $\lim _{n \rightarrow \infty} b_{n}=0$ (vanishing at infinity)
(b) $b_{n} \geq b_{n+1}$ (decreasing)
then the alternating series is convergent.

Give an example or two:
11. Ratio Test (Use this if you see a factorial in the sum)

Let $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.
(a) If $L<1$, then $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
(b) If $L>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
(c) If $L=1$, then the Ratio Test is inconclusive and we must use other testing methods.

## Give an example or two:

### 8.3 Remainder Estimate for the Integral Test.

Suppose $f(k)=a_{k}$, where $f(x)$ is a continuous, positive decreasing function for $x \geq n$ and $\sum_{n=1}^{\infty} a_{n}$ is convergent. If $R_{n}=s-s_{n}$ where $s_{n}$ is the $n$-th partial sum, then

$$
\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

Also,

$$
s_{n}+\int_{n+1}^{\infty} f(x) d x \leq s \leq s_{n}+\int_{n}^{\infty} f(x) d x
$$

## Give an example or two:

### 8.4 Alternating Series Estimation Theorem.

If $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=s$ is the sum of an alternating series that satisfies

$$
\text { (i) } \lim _{k \rightarrow \infty} b_{k}=0 \quad \text { and } \quad \text { (ii) } b_{k} \geq b_{k+1}
$$

then $\left|R_{n}\right|$, the error for the $n$-th partial sum, is less than or equal to the $(n+1)$-th term, $b_{n+1}$.

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1} .
$$

Note that $s_{n}=\sum_{k=1}^{n}(-1)^{k-1} b_{k}$. In other words, the error will be less than or equal to the next term.

## Give an example or two:

