Exam 2 Review Handout

1. Sequences

A sequence $\{a_n\}$ is a list of numbers written in a definite order:

 $a_1, a_2, a_3, \cdots, a_n, \cdots$

Give an example or two:

Convergence and **divergence** of mathematical objects like sequences and series is about whether the limit exists or doesn't exist.

2. The Geometric Sequence

The sequence $a_n = r^n$ is convergent if $-1 < r \le 1$ and divergent for all other values of r.

 $\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } -1 < r < 1\\ 1 & \text{if } r = 1 \end{cases}$

3. The Squeeze Theorem

If
$$a_n \leq b_n \leq c_n$$
 and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

If $\lim_{n \to \infty} |a_n| = 0$, then $\lim_{n \to \infty} a_n = 0$.

Give an example or two:

1. Series

Given a sequence $\{a_n\}$, a **finite sum**

$$s_m = \sum_{n=1}^m a_n = a_1 + a_2 + \dots + a_m$$

is called the *m*-th partial sum s_m .

A series is an infinite sum of the sequence a_n , where

$$\sum_{n=1}^{\infty} a_n = \lim_{m \to \infty} \sum_{n=1}^{m} a_n = \lim_{m \to \infty} s_m = s$$

If the above limit exists, we say that the series **converges** and if the above limit doesn't exist, then we say that the series **diverges**.

A series $\sum_{n=1}^{\infty} a_n$ is called **absolutely convergent** if the series of absolute values $\sum_{n=1}^{\infty} |a_n|$ is convergent.

Give an example or two:

A series $\sum_{n=1}^{\infty} a_n$ is called **conditionally convergent** if it is not absolutely convergent but still converges.

Give an example or two:

If a series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then it is convergent.

2. Geometric Series

The geometric series

$$\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + \cdots$$

is convergent if |r| < 1 and its sum is

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$

If $|r| \ge 1$, the geometric series is divergent.

3. Telescoping Sums

With some algebra, a series can be broken down into a sum of a difference

$$\sum_{n=1}^{\infty} (a_n - a_{n+1})$$

where cancellation happens in the partial sum

$$\sum_{n=1}^{m} a_n - a_{n+1} = (a_1 - a_2) + (a_2 - a_3) + (a_3 - a_4) + \dots + (a_m - a_{m+1}) = a_1 - a_{m+1}$$

Take the limit of the partial sums as $m \to \infty$ to determine convergence.

4. The p-series and the p-test

The *p*-series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is convergent if $p > 1$ and divergent if $p \le 1$.

Give an example or two:

5. Divergence Test

	∞		
If $\lim_{n \to \infty} a_n$ does not exist or	$\lim_{n \to \infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n \neq 0$		

Give an example or two:		

6. Convergent series must have vanishing terms at infinity.

If the series
$$\sum_{n=1}^{\infty} a_n$$
 is convergent, then $\lim_{n \to \infty} a_n = 0$.

7. Integral Test

Let $\sum_{n=1}^{\infty} a_n$ be a series with positive terms and let $f(n) = a_n$. Suppose f is a continuous, positive, decreasing function on $[1, \infty)$. (a) If $\int_1^{\infty} f(x) dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ converges. (b) If $\int_1^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ diverges.

8. Direct Comparison Test.

Suppose
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ are series with $0 \le a_n \le b_n$ for all n . Then
 $0 \le \sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} b_n$

 $\overline{n=1}$

 $\overline{n=1}$

and

(a) If
$$\sum_{n=1}^{\infty} b_n$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges.
(b) If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

To use either of the comparison tests, we need to compare our messy-looking series to another series that we already understand. Below are the series that we understand so far:

(a) A geometric series (a and r are constants)

$$\sum_{n=0}^{\infty} ar^n$$

(b) A p-series (p is a constant)

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

(c) A series that looks similar to an improper integral that can be solved using u-sub or other integration techniques

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n} \approx \int_{2}^{\infty} \frac{1}{x \ln x} \, dx$$

9. Limit Comparison Test

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

If $\lim_{n\to\infty} \frac{a_n}{b_n}$ exists and is non-zero, then either both series converge or both series diverge.

Give an example or two:

10. Alternating Series Test

Suppose
$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n$$
 is an alternating series. If

- (a) $\lim_{n \to \infty} b_n = 0$ (vanishing at infinity)
- (b) $b_n \ge b_{n+1}$ (decreasing)

then the alternating series is convergent.

11. Ratio Test (Use this if you see a factorial in the sum)

Let
$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
.
(a) If $L < 1$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
(b) If $L > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.
(c) If $L = 1$, then the Ratio Test is inconclusive and we must use other testing methods.

Give an example or two:

8.3 Remainder Estimate for the Integral Test.

Suppose $f(k) = a_k$, where f(x) is a continuous, positive decreasing function for $x \ge n$ and $\sum_{n=1}^{\infty} a_n$ is convergent. If $R_n = s - s_n$ where s_n is the *n*-th partial sum, then

$$\int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_n^{\infty} f(x) \, dx.$$

Also,

$$s_n + \int_{n+1}^{\infty} f(x) \, dx \le s \le s_n + \int_n^{\infty} f(x) \, dx.$$

8.4 Alternating Series Estimation Theorem.

If $\sum_{n=1}^{\infty} (-1)^{n-1} b_n = s$ is the sum of an alternating series that satisfies

(i)
$$\lim_{k \to \infty} b_k = 0$$
 and (ii) $b_k \ge b_{k+1}$

then $|R_n|$, the error for the *n*-th partial sum, is less than or equal to the (n + 1)-th term, b_{n+1} .

$$|R_n| = |s - s_n| \le b_{n+1}.$$

Note that $s_n = \sum_{k=1}^n (-1)^{k-1} b_k$. In other words, the error will be less than or equal to the next term.