Daily Quiz

- Go to Socrative.com and complete the quiz.
- Room Name: HONG5824
- Use your full name.

7.2 Visualizing Differential Equations

- A differential equation is an equation that contains an unknown function and one or more of its derivatives.

$$
\frac{d P}{d t}=k P
$$

- A Slope Field is the graph of the derivative as a collection of slopes.
- Note: A slope field is also called a Direction Field.

Slope Field Generator: https://www.desmos.com/calculator/2zqmtzOhbk

7.2 Manually Computing Slope Fields

Math 2300-014, Fall 2018, Jun Hong

7.2 Slope Fields

$\frac{d y}{d x}=x+y$
Sketch the solution curve that passes through $(1,1)$.

- A solution curve to a differential equation is a path traced out by the lines of the slope field.
- If the slope field represents a river's water currents, a solution curve represents a paper boat's path as it moves along with the current given its initial location.

7.2 Slope Fields
 $\frac{d y}{d x}=x-y$

Sketch the solution curve that passes through $(-2,0)$.

7.2 Slope Fields $\frac{d y}{d x}=y-x$

Sketch the solution curve that passes through $(-2,-1)$.

7.2 Slope Fields $\frac{d y}{d x}=2-y$

- The constant-valued solutions are called equilibrium solutions
- A differential equation of the form $\frac{d y}{d x}=f(y)$ in which the independent variable is missing from the right side, is called autonomous.
- We can obtain infinitely many other solutions of an autonomous differential equation by just shifting the graph of one solution to the right or left.

7.2 Slope Fields

$\frac{d y}{d x}=-\frac{x}{y}$
Sketch the solution curve that passes through $(0,5)$.

7.2 Slope Fields
 $\frac{d y}{d x}=-\frac{y}{x}$

Sketch the solution curve that passes through (5,2).

7.2 Slope Fields

$\frac{d y}{d x}=\frac{x}{y}$
Sketch the solution curve that passes through ($0,-4$).

7.2 Slope Fields

$$
\frac{d y}{d x}=0.25 y(4-y)
$$

- How many equilibrium solutions do you see?
- Can you identify the equilibrium solutions from just the differential equation?
- The solution $\mathrm{y}=4$ is a stable equilibrium solution.
- The solution $\mathrm{y}=0$ is an unstable equilibrium solution.

