Reminder

- Handouts are due Friday.
- Check WebAssign for online homework.
- Written homework is due Thursday.
- Syllabus last page sign and return by Friday.

Indefinite Integral Domino Chain

- Get in a group of 4 or 5 and start matching the top half of a domino with the bottom half of another domino.
- Split the work: 5-6 cards per person.
- You will need a scratch paper to work out the integrals.
- They should form a chain; when finished, they become a loop.
- You got 10 minutes.

Daily Quiz

- Go to Socrative.com and complete the quiz.
- Use your full name.
- Room Name: HONG5824
5.5 The Substitution Rule (Review)

Find $\int x^{3} \cos \left(x^{4}+2\right) d x$.
We see x^{3} and $x^{4}+2$. Since the derivative of $x^{4}+2$ is $4 x^{3}$, choosing $u=x^{4}+2$ may work.

$$
\left.\left.\begin{array}{rl}
u=x^{4}+2 \\
d u & =4 x^{3} d x \\
\frac{d u}{4}=x^{3} d x
\end{array} \right\rvert\, \int x^{3} \cos \left(x^{4}+2\right) d x=\int \cos \left(x^{4}+2\right) x^{3} d x\right] \text { (u) } \begin{aligned}
& 4 \\
&=\int \cos (u \\
&=\frac{1}{4} \int \cos (u) d u \\
&=\frac{1}{4} \sin (u)+c \\
&=\frac{1}{4} \sin \left(x^{4}+2\right)+C
\end{aligned}
$$

5.5 The Substitution Rule (Review)

Find $\int \frac{x}{\sqrt{1-4 x^{2}}} d x$.
we see x and $1-4 x^{2}$. Since the derivative of $1-4 x^{2}$ is $-8 x$,

$$
\left.\begin{aligned}
& \text { choosing } u=1-4 x^{2} \text { should work. } \\
& \left.\begin{aligned}
& u=1-4 x^{2} \\
& d u=-8 x d x \\
& \frac{d u}{-8}=x d x
\end{aligned} \right\rvert\, \int \frac{x}{\sqrt{1-4 x^{2}}} d x=\int \frac{x d x}{\sqrt{1-4 x^{2}}} \\
&=\int \frac{\frac{d u}{-8}}{\sqrt{u}} \\
&=-\frac{1}{8} \frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+C \\
&=-\frac{1}{8} \int \frac{u^{\frac{1}{2}}}{\frac{1}{2}}+C \\
&=-\frac{1}{8} \cdot 2 u^{\frac{1}{2}}+C \\
&=-\frac{1}{8} \int u^{-\frac{1}{2}} d u
\end{aligned} \right\rvert\,=-\frac{1}{4} \sqrt{u}+C
$$

5.5 The Substitution Rule (Review)

Two possible substitutions Evaluate $\int \sqrt{2 x+1} d x$.

$$
\left.\left.\begin{array}{l}
\text { 1. Let's first try } u=2 x+1 \\
\begin{array}{rl}
u=2 x+1 \\
d u & =2 d x \\
\frac{d u}{2}=d x
\end{array}\left|\begin{array}{rl}
\sqrt{2 x+1} d x & =\int \sqrt{u} \frac{d u}{2} \\
& =\frac{1}{2} \int \sqrt{u} d u \\
& =\frac{1}{2} \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1}+C \\
& =\frac{1}{2} \frac{u^{3 / 2}}{3 / 2}+C \\
& =\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}+C
\end{array}\right|=\frac{1}{3} u^{3 / 2}+C \\
\hline
\end{array} \right\rvert\, 2 x+1\right)^{3 / 2}+C
$$

5.5 The Substitution Rule (Review)

Two possible substitutions Evaluate $\int \sqrt{2 x+1} d x$.
2. Let's try $u=\sqrt{2 x+1}$.

$$
\begin{aligned}
& u=\sqrt{2 x+1} \\
& d u=\frac{1}{2}(2 x+1)^{-\frac{1}{2}} \cdot 2 d x \\
& d u=(2 x+1)^{-\frac{1}{2}} d x \\
& (2 x+1)^{\frac{1}{2}} d u=d x
\end{aligned}
$$

observe that this is u

$$
u d u=d x
$$

$$
\begin{aligned}
\int \sqrt{2 x+1} d x & =\int u \cdot u d u \\
& =\int u^{2} d u \\
& =\frac{u^{3}}{3}+C \\
& =\frac{(\sqrt{2 x+1})^{3}}{3}+C
\end{aligned}
$$

Q: Is this the same answer as the previous answer?

5.5 Changing Boundary Values for the u-Substitution

5 The Substitution Rule for Definite Integrals If g^{\prime} is continuous on $[a, b]$ and f is continuous on the range of $u=g(x)$, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

In other words, the x-bounds a and b change
to the u-bounds $u(a)$ and $u(b)$.
5.5 Changing Boundaries

Evaluate $\int_{0}^{4} \sqrt{2 x+1} d x$
Recall that were already computed the antiderivative of $\sqrt{2 x+1}$.

$$
\int \sqrt{2 x+1} d x=\frac{(2 x+1)^{3 / 2}}{3}+c
$$

We can use this to evaluate $\int_{0}^{4} \sqrt{2 x+1} d x$ by plugging in the bounds 4 and 0 .

$$
\begin{aligned}
\int_{0}^{4} \sqrt{2 x+1} d x & =\left[\frac{(2 x+1)^{3 / 2}}{3}\right]_{0}^{4} \\
& =\frac{9^{3 / 2}}{3}-\frac{1^{3 / 2}}{3} \\
& =\frac{27}{3}-\frac{1}{3}=\frac{26}{3}
\end{aligned}
$$

5.5 Changing Boundaries

Evaluate $\int_{0}^{4} \sqrt{2 x+1} d x$
Instead, we can also change the bounds right after we make our substitution $u=2 x+1$:

$$
\begin{aligned}
& u=2 x+1 \\
& d u=2 d x \\
& \frac{d u}{2}=d x
\end{aligned}
$$

$$
\int_{x=0}^{x=4} \sqrt{2 x+1} d x=\int_{u=?}^{u=?} \sqrt{u} \frac{d u}{2}
$$

We compute the u-bounds by plugging in $x=4$ and $x=0$ to the substitution formula $u=2 x+1$.

$$
\begin{aligned}
& u(4)=2(4)+1=9 \\
& u(0)=2(0)+1=1
\end{aligned}
$$

Hence the integral becomes

$$
\begin{aligned}
\int_{u(0)}^{u(4)} \sqrt{u} \frac{d u}{2} & =\int_{1}^{9} \sqrt{u} \frac{d u}{2} \\
& =\frac{1}{2}\left[\frac{2}{3} \cdot u^{3 / 2}\right]_{1}^{9} \\
& =\frac{1}{3}\left[u^{3 / 2}\right]_{1}^{9} \\
& =\frac{1}{3}\left[9^{3 / 2}-1^{3 / 2}\right] \\
& =\frac{26}{3}
\end{aligned}
$$

5.5 Visualizing the u-Substitution

When we change a variable, we shrink or stretch the region of integration based of the relation between $d u$ and $d x$.

$$
\int_{0}^{4} \sqrt{2 x+1} d x
$$

$$
\int_{1}^{9} \frac{\sqrt{u}}{2} d u
$$

8/28/2018

Math 2300-014, Fall 2018, Jun Hong
5.5 Changing Boundaries

Evaluate $\int_{1}^{2} \frac{d x}{(3-5 x)^{2}}$.
Let $u=3-5 x \cdot \left\lvert\, \int_{1}^{2} \frac{d x}{(3-5 x)^{2}}=\int_{-2}^{-7} \frac{d u /-5}{u^{2}}\right.$

$$
=\frac{1}{5}\left[u^{-1}\right]_{-2}^{-7}
$$

$$
=\frac{1}{5}\left[\frac{1}{-7}-\frac{1}{-2}\right]
$$

$$
\begin{aligned}
& u=3-5 x \\
& d u=-5 d x \\
& \frac{d u}{-5}=d x
\end{aligned}
$$

Bounds

$$
\begin{aligned}
u(2) & =3-5(2) \\
& =-7 \\
u(1) & =3-5(1) \\
& =-2
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{5} \int_{-2}^{-7} \frac{d u}{u^{2}}=\frac{1}{5}\left[-\frac{1}{7}+\frac{1}{2}\right] \\
& =-\frac{1}{5} \int_{-2}^{-7} u^{-2} d u \\
& =-\frac{1}{5}\left[\frac{u^{-2+1}}{-2+1}\right]_{-2}^{-7}=\frac{1}{5}\left[-\frac{2}{14}+\frac{7}{14}\right] \\
& =\frac{1}{5}\left[\frac{5}{14}\right] \\
& =\frac{1}{14}
\end{aligned}
$$

5.5 Changing Boundaries

Calculate $\int_{1}^{e} \frac{\ln x}{x} d x$.
observe that the derivative of $\ln x$ is $\frac{1}{x}$ so we let $u=\ln x$.

$$
\left.\begin{aligned}
& \left.\begin{array}{l}
u=\ln x \\
d u=\frac{1}{x} d x \\
\text { Bounds } \\
u(e)=\ln e=1 \\
u(1)=\ln 1=0
\end{array} \right\rvert\, \int_{1}^{e} \frac{\ln x}{x} d x
\end{aligned} \right\rvert\,=\int_{1}^{e} \ln x \frac{1}{x} d x
$$

5.6 Integration by Parts Is Product Rule in Reverse

Recall: Product Rule
Let $f(x)$ and $g(x)$ be differentiable functions.
Then

$$
\frac{d}{d x}(f g)=f^{\prime} g+f g^{\prime}
$$

(Product Rule)

If we integrate both sides with respect to x, we get

$$
\begin{aligned}
& \int \frac{d}{d x}(f g) d x=\int\left(f^{\prime} g+f g^{\prime}\right) d x \\
& f g=\int f^{\prime} g d x+\int f g^{\prime} d x
\end{aligned}
$$

50

$$
\int^{\text {so }} f g^{\prime} d x=f g-\int f^{\prime} g d x \text {. (Integration by Parts) }
$$

In another notation, we let $u=f, v=9$, $d u=f^{\prime}$, and $d v=g^{\prime}$ and get 2300-014, Fall 2108, Jun Hong $\underbrace{\int u d v=u v-\int v d u}_{\text {Page } 14}$

5.6 Integration by Parts

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x
$$

$$
\int u d v=u v-\int v d u
$$

5.6 Integration by Parts

Integrating by parts Find $\int x \sin x d x$.
To use integration by Parts, we have to pick and choose our " u " and "dr". Let's try $u=x$ and $d v=\sin x d x$.

$$
\begin{aligned}
& \begin{array}{l|l|}
u=x & v=-\cos x \\
\hline d u=d x & d v=\sin x d x
\end{array} \quad \int u d v=u v-\int v d u \\
& \int x \sin x d x=x(-\cos x)-\int-\cos x d x \\
& =-x \cos x+\int \cos x d x \\
& =-x \cos x+\sin x+C
\end{aligned}
$$

Summary

- More u-sub
- Definite integrals with u-sub
- Intro to integration by parts

