1. Determine the degree of the Taylor polynomial $P_{n}(x)$ expanded about $c=1$ that should be used to approximate $\ln (1.2)$ so that the error is less than 0.0005 .
(a) Find the first four derivatives for $f(z)=\ln (z)$

$$
\begin{aligned}
f(z) & =\ln (z) \\
f^{\prime}(z) & =\frac{1}{z} \\
f^{\prime \prime}(z) & =\frac{-1}{z^{2}} \\
f^{(3)}(z) & =\frac{2}{z^{3}} \\
f^{(4)}(z) & =\frac{-6}{z^{4}}
\end{aligned}
$$

(b) Find a formula for $\left|f^{(n+1)}(z)\right|$ where $z>0$.

$$
\left|f^{(n+1)}(z)\right|=\frac{n!}{z^{n+1}}
$$

(c) We are approximating the function $f(x)=\ln (x)$ at $x=1.2$ using a Taylor polynomial centered at $c=1$. If

$$
\left|f^{(n+1)}(z)\right| \leq M
$$

for all z in the interval $1 \leq z \leq 1.2$. Then we wish to find the upper bound M. To do this find

$$
\begin{gathered}
\frac{d}{d z}\left(\left|f^{(n+1)}(z)\right|\right) \\
\frac{d}{d z}\left(\left|f^{(n+1)}(z)\right|\right)=\frac{-(n+1)!}{z^{n+2}}
\end{gathered}
$$

i. Does $\left|f^{(n+1)}(z)\right|$ have any critical points on $1 \leq z \leq 1.2$? No
ii. Is $\left|f^{(n+1)}(z)\right|$ increasing or decreasing on $1 \leq z \leq 1.2$? decreasing
(d) Use part (c) to identify a good upper bound M for $\left|f^{(n+1)}(z)\right|$ on the interval $1 \leq z \leq 1.2$. (Notice that M will depend on n.)

Using the fact that $\left|f^{(n+1)}(z)\right|$ is decreasing we know that the maximum value will occur on the left endpoint. Therefore to find the maximum we evaluate at $x=1$. Thus $M=n$!
(e) Make use of the inequality

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-c|^{n+1}<0.0005
$$

to find an appropriate value for n that gives accuracy within 0.0005 .
Using the fact that $M=n!, x=1.2$, and $c=1$ we have,

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-c|^{n+1}=\frac{n!}{(n+1)!}|\cdot 2|^{n+1}<10^{-3}
$$

which by guessing and checking we see that for $n=3$ this is true.
(f) Finally approximate $\ln (1.2)$ using the n th-degree Taylor polynomial centered at $c=1$ with the n you found in part (e).

$$
P_{3}(z)=\sum_{n=1}^{3} \frac{(-1)^{n-1}(x-1)^{n}}{n}=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}
$$

Therefore when $x=1.2$ we get $P_{3}(1.2)=0.182667$.

