1 Sequences and Series

1. Use $a_{n}=\frac{2}{n+1}$ for the following questions.
(a) Write the sequence made up of the given terms. Calculate the first 3 terms of the sequence.
(b) Write the series made up of the given terms. Calculate the first 3 partial sums.
2. Does the sequence you wrote above converge? If so, to what?
3. Does the series you wrote above converge?
4. Describe the difference between a sequence and a series.

2 Geometric Series

1. Which of the following are geometric series? How can you tell?
(a) $\sum_{n=0}^{\infty} 3\left(\frac{3}{4}\right)^{n}$
(b) $\sum_{n=0}^{\infty} 3\left(\frac{3}{4}\right)^{2 n}$
(c) $\sum_{n=0}^{\infty} 3\left(\frac{4}{3}\right)^{n+1}$
(d) $\sum_{n=0}^{\infty} 3\left(\frac{1}{4}\right)^{n^{2}}$
(e) $6+3+1.5+.75+\cdots$
(f) $-16+9-4+1-\frac{1}{2}+\frac{1}{4}-\frac{1}{9}+\cdots$
(g) $12-4+\frac{4}{3}-\frac{4}{9}+\cdots$
2. $\sum_{n=0}^{\infty} 7\left(\frac{2}{3}\right)^{n}$ is a geometric series.
(a) Write down (expand) the first few partial sums of the given series.
(b) What is the $n^{\text {th }}$ partial sum of the given series?
(c) What does the given series converge to?
3. $\sum_{n=3}^{\infty} 7\left(\frac{2}{3}\right)^{2 n}$ is a geometric series.
(a) Write down (expand) the first few partial sums of the given series.
(b) What is the $n^{\text {th }}$ partial sum of the given series?
(c) What does the given series converge to?

3 Integral Comparison

If possible, use the $n^{t h}$ term (divergence) test, the integral comparison test, or the p-series test to determine whether the following series converge or diverge. State which test you used, and if none of them apply, explain why.

1. $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$
2. $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$
3. $\sum_{n=2}^{\infty} \frac{n}{\ln (n)}$
4. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
5. $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$
6. $\sum_{n=1}^{\infty} e^{-n}$
7. $\sum_{n=1}^{\infty} n e^{-n}$
8. $\sum_{n=1}^{\infty} \frac{e^{n}}{n}$

4 Comparison Tests

For each of the following series, try to determine if the series converges or diverges. For practice, try both the term-size comparison test and the limit comparison test to see if one or both or neither works, explaining why.

1. $\sum_{n=1}^{\infty} \frac{1}{n+\ln (n)}$
2. $\sum_{n=1}^{\infty} \frac{2}{n(\ln (n))^{2}}$
3. $\sum_{n=1}^{\infty} \frac{n^{2}+1}{\sqrt{n^{7}-n^{3}-4}}$
4. $\sum_{n=1}^{\infty} \frac{n^{2}+1}{\sqrt{n^{6}-n^{3}-4}}$
5. $\sum_{n=1}^{\infty} \frac{1}{n^{2}-n}$
6. $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$
7. $\sum_{n=1}^{\infty} e^{-(n+1)}$
8. $\sum_{n=1}^{\infty} \frac{(\ln (n))^{2}}{n}$
