MATH 2300, Calc 2

Calculating integrals - the big picture

January 15, 2015

Techniques you know so far:

Techniques you know so far:

- Simplify integrand, or write in a different form

Techniques you know so far:

- Simplify integrand, or write in a different form
- u/du substitution

Techniques you know so far:

- Simplify integrand, or write in a different form
- u/du substitution
- Integration by parts

Techniques you know so far:

- Simplify integrand, or write in a different form
- u/du substitution
- Integration by parts

What technique do you think would work best?

$$
\int \frac{x^{3}+\sqrt{x}}{\sqrt{x}} d x
$$

What technique do you think would work best?

$$
\int \frac{x^{3}+\sqrt{x}}{\sqrt{x}} d x
$$

Simplify (distribute the denominator)

What technique do you think would work best?

$$
\int \frac{x^{3}+\sqrt{x}}{\sqrt{x}} d x
$$

Simplify (distribute the denominator)

What technique do you think would work best?

$$
\int \frac{\sec \sqrt{x} \tan \sqrt{x}}{\sqrt{x}} d x
$$

What technique do you think would work best?

$$
\int \frac{\sec \sqrt{x} \tan \sqrt{x}}{\sqrt{x}} d x=\int \sec \sqrt{x} \tan \sqrt{x} \cdot \frac{1}{\sqrt{x}} d x
$$

What technique do you think would work best?

$$
\int \frac{\sec \sqrt{x} \tan \sqrt{x}}{\sqrt{x}} d x=\int \sec \sqrt{x} \tan \sqrt{x} \cdot \frac{1}{\sqrt{x}} d x
$$

u/du substitution,

What technique do you think would work best?

$$
\int \frac{\sec \sqrt{x} \tan \sqrt{x}}{\sqrt{x}} d x=\int \sec \sqrt{x} \tan \sqrt{x} \cdot \frac{1}{\sqrt{x}} d x
$$

u / du substitution, $u=\sqrt{x}$,

What technique do you think would work best?

$$
\int \frac{\sec \sqrt{x} \tan \sqrt{x}}{\sqrt{x}} d x=\int \sec \sqrt{x} \tan \sqrt{x} \cdot \frac{1}{\sqrt{x}} d x
$$

u / du substitution, $u=\sqrt{x}, d u=\frac{1}{2 \sqrt{x}} d x$

What technique do you think would work best?

$$
\int x \ln x d x
$$

What technique do you think would work best?

$$
\int x \ln x d x
$$

Integration by parts,

What technique do you think would work best?

$$
\int x \ln x d x
$$

Integration by parts, $u=\ln x, d v=x d x$

What technique do you think would work best?

$$
\int \frac{\ln x}{x} d x
$$

What technique do you think would work best?

$$
\int \frac{\ln x}{x} d x=\int \ln x \cdot \frac{1}{x} d x
$$

What technique do you think would work best?

$$
\int \frac{\ln x}{x} d x=\int \ln x \cdot \frac{1}{x} d x
$$

u/du substitution,

What technique do you think would work best?

$$
\int \frac{\ln x}{x} d x=\int \ln x \cdot \frac{1}{x} d x
$$

u / du substitution, $u=\ln x$,

What technique do you think would work best?

$$
\int \frac{\ln x}{x} d x=\int \ln x \cdot \frac{1}{x} d x
$$

u / du substitution, $u=\ln x, d u=\frac{1}{x} d x$

What technique do you think would work best?

$$
\int \frac{\arcsin x}{\sqrt{1-x^{2}}} d x
$$

What technique do you think would work best?

$$
\int \frac{\arcsin x}{\sqrt{1-x^{2}}} d x \int \arcsin x \cdot \frac{1}{\sqrt{1-x^{2}}} d x
$$

What technique do you think would work best?

$$
\int \frac{\arcsin x}{\sqrt{1-x^{2}}} d x \int \arcsin x \cdot \frac{1}{\sqrt{1-x^{2}}} d x
$$

u/du substitution,

What technique do you think would work best?

$$
\int \frac{\arcsin x}{\sqrt{1-x^{2}}} d x \int \arcsin x \cdot \frac{1}{\sqrt{1-x^{2}}} d x
$$

$u / d u$ substitution, $u=\arcsin x$,

What technique do you think would work best?

$$
\int \frac{\arcsin x}{\sqrt{1-x^{2}}} d x \int \arcsin x \cdot \frac{1}{\sqrt{1-x^{2}}} d x
$$

u / du substitution, $u=\arcsin x, d u=\frac{1}{\sqrt{1-x^{2}}} d x$

What technique do you think would work best?

$$
\int x^{2} \sin x d x
$$

What technique do you think would work best?

$$
\int x^{2} \sin x d x
$$

Integration by parts,

What technique do you think would work best?

$$
\int x^{2} \sin x d x
$$

Integration by parts, $u=x^{2}, d v=\sin x d x$

What technique do you think would work best?

$$
\int x \sin x^{2} d x
$$

What technique do you think would work best?

$$
\int x \sin x^{2} d x
$$

u/du substitution,

What technique do you think would work best?

$$
\int x \sin x^{2} d x
$$

u / du substitution, $u=x^{2}$,

What technique do you think would work best?

$$
\int x \sin x^{2} d x
$$

$u / d u$ substitution, $u=x^{2}, d u=2 x d x$

