SAMPLE MIDTERM II EUCLIDEAN AND NON-EUCLIDEAN GEOMETRY MATH 3210 Friday February 21, 2014 | Name | | |------|--| |------|--| Please answer all of the questions, and show your work. All solutions must be explained clearly to receive credit. | 1 | 2 | 3 | 4 | 5 | | |----|----|----|----|----|-------| | 10 | 10 | 10 | 10 | 10 | Total | Date: March 21, 2014. 10 points - **1.(a).** Define $\mathbb{A}^2_{\mathbb{R}}$ and $\mathbb{P}^2_{\mathbb{R}}$. - **1.(b).** Show that $\mathbb{P}^2_{\mathbb{R}}$ is isomorphic to the projective completion of $\mathbb{A}^2_{\mathbb{R}}$. 10 points 2. List the axioms of congruence. 10 points **3.** Let $\mathbb B$ be a betweenness plane. Suppose that A*B*D and A*C*D. Show using only the axioms of a betweenness plane, and properties of incidence planes, that if $B \neq C$, then either A*B*C or A*C*B. 10 points - **4.(a).** In a Hilbert plane, show that if a ray emanates from an interior point of a triangle, then it intersects one of the sides of the triangle. - **4.(b).** In a Hilbert plane, show that a line cannot be contained in the interior of a triangle. | 5. True or false. | 5 | |--|--------------| | | 10 points | | 5.(a) Suppose that A, B, C, D are points in a Hilbert plane, all lying or line. If $A * C * B$ and $A * B * D$, then $A * C * D$. | a common | | 5.(b) Aristotle's continuity principle implies Archimedes' continuity pri | nciple. | | 5.(c) All Euclidean planes are isomorphic. | | | 5.(d) Every projective plane is a Hilbert plane. | | | 5.(e) Given an affine plane \mathbb{A} , there is a projective plane \mathbb{P} with \mathbb{A} isom sub-plane of \mathbb{P} . | norphic to a | | 5.(f) In a betweenness plane \mathbb{B} , if L is a line and P is a point, then the line through P perpendicular to L . | ere exists a | | 5.(g) The set of points of a Hilbert plane is infinite. | | | 5.(h) In a Hilbert plane, if \overrightarrow{AD} is between \overrightarrow{AC} and \overrightarrow{AB} , then \overrightarrow{AD} interse \overrightarrow{BC} . | cts segment | | 5.(i) Let \mathbb{P} be a finite projective plane. Assume there exists a line of \mathbb{P} v $n+1$ points lying on it. Then every line of \mathbb{P} has exactly $n+1$ points lying on | | | 5.(j) Suppose that $f: \mathbb{I} \to \mathbb{J}$ is a morphism of incidence planes. The isomorphism if and only if there exists a morphism $g: \mathbb{J} \to \mathbb{I}$ such that $g \circ f = \mathbb{I}$ | |