SAMPLE MIDTERM II
 EUCLIDEAN AND NON-EUCLIDEAN GEOMETRY

MATH 3210

Friday February 21, 2014
Name \quad

Please answer all of the questions, and show your work.
All solutions must be explained clearly to receive credit.

1	2	3	4	5	
10	10	10	10	10	Total

1.(a). Define $\mathbb{A}_{\mathbb{R}}^{2}$ and $\mathbb{P}_{\mathbb{R}}^{2}$.
1.(b). Show that $\mathbb{P}_{\mathbb{R}}^{2}$ is isomorphic to the projective completion of $\mathbb{A}_{\mathbb{R}}^{2}$.
2. List the axioms of congruence.
3. Let \mathbb{B} be a betweenness plane. Suppose that $A * B * D$ and $A * C * D$. Show using only the axioms of a betweenness plane, and properties of incidence planes, that if $B \neq C$, then either $A * B * C$ or $A * C * B$.

4
10 points

4.(a). In a Hilbert plane, show that if a ray emanates from an interior point of a triangle, then it intersects one of the sides of the triangle.
4.(b). In a Hilbert plane, show that a line cannot be contained in the interior of a triangle.
5. True or false.

5
10 points

\square
5.(a) Suppose that A, B, C, D are points in a Hilbert plane, all lying on a common line. If $A * C * B$ and $A * B * D$, then $A * C * D$.

5.(b) Aristotle's continuity principle implies Archimedes' continuity principle.

5.(c) All Euclidean planes are isomorphic.

5.(d) Every projective plane is a Hilbert plane.

5.(e) Given an affine plane \mathbb{A}, there is a projective plane \mathbb{P} with \mathbb{A} isomorphic to a sub-plane of \mathbb{P}.

5.(f) In a betweenness plane \mathbb{B}, if L is a line and P is a point, then there exists a line through P perpendicular to L.

5.(g) The set of points of a Hilbert plane is infinite.

5.(h) In a Hilbert plane, if $\overrightarrow{A D}$ is between $\overrightarrow{A C}$ and $\overrightarrow{A B}$, then $\overrightarrow{A D}$ intersects segment $B C$.
\square
5.(i) Let \mathbb{P} be a finite projective plane. Assume there exists a line of \mathbb{P} with exactly $n+1$ points lying on it. Then every line of \mathbb{P} has exactly $n+1$ points lying on it.
5.(j) Suppose that $f: \mathbb{I} \rightarrow \mathbb{J}$ is a morphism of incidence planes. Then f is an isomorphism if and only if there exists a morphism $g: \mathbb{J} \rightarrow \mathbb{I}$ such that $g \circ f=I d_{\mathbb{I}}$.

