# SAMPLE MIDTERM I <br> EUCLIDEAN AND NON-EUCLIDEAN GEOMETRY 

MATH 3210

Friday February 14, 2014

Name

Please answer all of the questions, and show your work.
All solutions must be explained clearly to receive credit.

| 1 |
| :--- |
| 10 points |

1. Suppose $A, B, C$ are subsets of a set $X$. For each of the following statements, either prove the statement, or provide a counter example.
1.(a). $A \cup\left(B \cap A^{c}\right)=A \cup B$.
1.(b). $A-(B \cup C)=(A-B) \cup(A-C)$.
1.(c). $(A \cap B) \cup\left(A \cap B^{c}\right)=A$.

| 2 |
| :--- |
| 10 points |

2. Let $X=\mathbb{Z} \times(\mathbb{Z}-\{0\})$. Define a relation on $X$ by

$$
(a, b) \sim(c, d) \Longleftrightarrow a d=b c
$$

2.(a). Show that $\sim$ is an equivalence relation.
2.(b). Show that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$, then $(a c, b d) \sim\left(a^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)$.
2.(c). Show that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$, then $(a d+b c, b d) \sim\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)$.
2.(d). Let $Q=X / \sim$ be the quotient of $X$ by the equivalence relation. Show that there is a map

$$
\mu: Q \times Q \rightarrow Q
$$

given by $\mu([(a, b)],[(c, d)])=[(a c, b d)]$.
2.(e). Show that there is a map

$$
\mu: Q \times Q \rightarrow Q
$$

given by $\alpha([(a, b)],[(c, d)])=[(a d+b c, b d)]$.
3. Let $S$ be a non-empty set and let $\operatorname{Map}(S, S)$ be the set of maps from $S$ to $S$. Suppose that for every $f, g \in \operatorname{Map}(S, S)$, we have

$$
f \circ g=g \circ f
$$

Show that $S$ has only one element.

| 4 |
| :--- |
| 10 points |

4. Give the definition of a Classical Euclidean Plane.
5. Let $\mathbb{P}$ be a Classical Euclidean Plane. Show that if $L, M$ are distinct non-parallel lines, then $L$ and $M$ have a unique point in common.

10 points
6. Given an incidence plane, show that there exist three distinct, non-concurrent lines.
7. For each $(a, b, c) \in \mathbb{R}^{3}$, define

$$
L(a, b, c):=\left\{(x, y) \in \mathbb{R}^{2}: a x+b y+c=0\right\} .
$$

Define

$$
\begin{aligned}
\mathcal{P} & =\mathbb{R}^{2} \\
\mathcal{L}=\{L(a, b, c):[(a, b, c) & \left.\left.\in \mathbb{R}^{3}\right] \wedge[(a \neq 0) \vee(b \neq 0)]\right\}
\end{aligned}
$$

and

$$
\begin{gathered}
\lambda: \mathcal{P} \times \mathcal{L} \rightarrow\{0,1\} \\
\lambda(p, \ell)=1 \Longleftrightarrow p \in \ell .
\end{gathered}
$$

Show that $(\mathcal{P}, \mathcal{L}, \lambda)$ is an incidence plane.

