EUCLIDEAN AND NON-EUCLIDEAN GEOMETRY MATH 3210

HOMEWORK 1

SEBASTIAN CASALAINA-MARTIN

1. ExERCISES

Exercise A. Let $A=\{1,2,4,6\}, B=\{3,2,5\}$ and $C=\{2,5,10\}$. Find the following sets:
(1) $A \cup B$.
(2) $A \cap B$.
(3) $A-B$.
(4) $B-A$.
(5) $(B \cup C)-A$.
(6) $(A \cup C) \cap B$.
(7) $\mathscr{P}(B)$.

Exercise B. Let J and B be sets. For each $j \in J$, let A_{j} be a set. Show the following:
(1) $B \cup\left(\bigcap_{j \in J} A_{j}\right)=\bigcap_{j \in J}\left(B \cup A_{j}\right)$.
(2) $B \cap\left(\bigcup_{j \in J} A_{j}\right)=\bigcup_{j \in J}\left(B \cap A_{j}\right)$.
(3) $B-\left(\bigcap_{j \in J} A_{j}\right)=\bigcup_{j \in J}\left(B-A_{j}\right)$.
(4) $B-\left(\bigcup_{j \in J} A_{j}\right)=\bigcap_{j \in J}\left(B-A_{j}\right)$

Exercise C. Suppose that $f: A \rightarrow B$ is a map of sets, and let $C \subseteq A$.
(a) Prove or give a counter example: $f(A-C) \subseteq f(A)-f(C)$.
(b) Prove or give a counter example: $f(A)-f(C) \subseteq f(A-C)$.
(c) If f is injective, is it true that $f(A-C)=f(A)-f(C)$?
(d) If f is bijective, is it true that $f(A-C)=B-f(C)$?

Exercise D. Define a relation on $\mathbb{N} \times \mathbb{N}$ by

$$
(a, b) \sim(c, d) \Longleftrightarrow a+d=b+c
$$

(1) Show that \sim is an equivalence relation.
(2) Show that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$ then $(a+c, b+d) \sim\left(a^{\prime}+c^{\prime}, b^{\prime}+d^{\prime}\right)$.
(3) Show that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$ then $(a c+b d, b c+a d) \sim\left(a^{\prime} c^{\prime}+b^{\prime} d^{\prime}, b^{\prime} c^{\prime}+a^{\prime} d^{\prime}\right)$.
(4) Let $Z=(\mathbb{N} \times \mathbb{N}) / \sim$. Show that there is a map

$$
+: Z \times Z \rightarrow Z
$$

defined by $[(a, b)]+[(c, d)]=[(a+c, b+d)]$.
(5) Let $Z=(\mathbb{N} \times \mathbb{N}) / \sim$. Show that there is a map

$$
\cdot: Z \times Z \rightarrow Z
$$

defined by $[(a, b)] \cdot[(c, d)]=[(a c+b d, b c+a d)]$.
(6) Let $0_{Z}:=[(1,1)]$. Show that for all $z \in Z, 0_{Z}+z=z$.
(7) For all $z \in Z$, show that there exists $z^{\prime} \in Z$ such that $z^{\prime}+z=0_{Z}$.
(8) For all $x, y, z \in Z$, show that $(x+y)+z=x+(y+z)$.
(9) For all $x, y \in Z$, show that $x+y=y+x$.
(10) Let $1_{Z}=[(1,0)]$. Show that for all $z \in Z, 1_{Z} \cdot z=z$.
(11) For all $x, y \in Z$, show that $x \cdot y=y \cdot x$.
(12) For all $x, y, z \in Z$, show that $x \cdot(y+z)=x \cdot y+x \cdot z$.

