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Please answer all of the questions, and show your work.
All solutions must be explained clearly to receive credit.

1 2 3 4 5 6 7 8

10 10 20 20 10 10 10 10 Total

Date: March 17, 2013.
1



1

10 points

1.(a). [3 points] What is the definition of a symmetric matrix?

1.(b). [3 points] What is the definition of an invertible matrix?

1.(c). [4 points] Let A be a symmetric, invertible, n × n matrix. Use the definition of
a symmetric matrix and the definition of an invertible matrix to prove that A−1 is also
symmetric.
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10 points

2. Find the determinant of each of the following matrices.

2.(a). A =

 4 −1 1
−1 −2 0

0 1 0



2.(b). B =


0 1 0 0 0 π
1 0 e −4 8 3−5

0 0 0 1 0 0
0 5 1 0 2 104

0 0 0 3 0 1
0 0 0 −1 2 0


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20 points

3. Consider the matrix C =

 2 4 −3
1 −1 2
2 3 −1

.

3.(a). Find the cofactor matrix of C.

3.(b). Find the inverse of C using the cofactor matrix from part (a).
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20 points

4. Put the matrix D =

 −1 −4 −2 −2 −14
3 12 1 3 22
2 8 0 2 14

 into reduced row echelon form.
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10 points

5. Let D be the matrix in the previous problem.

5.(a). [3 points] Find a basis for the row space of D.

5.(b). [3 points] Find a basis for the column space of D.

5.(c). [4 points] Find a basis for the kernel of D.
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10 points

6. The equation x = Cx + d (the Leontief Production Equation) arises in the Leontief
Input-Output Model. Here x, d ∈ Mn×1(R) and C ∈ Mn×n(R). Consider also the equation
p = CTp+ v (called the price equation), where p, v ∈Mn×1(R). Show that

pTd = vTx.

(This quantity is known as GDP.) [Hint: Compute pTx in two ways.]
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10 points

7. Let V = R[x] be the vector space of real polynomial functions. Let D : V → V be the
derivative map; i.e. D(p) = p′ for all p ∈ V . Let E : V → V be the integration map that
sends a polynomial p to the polynomial q given by q(x) =

∫ x

0
p(t)dt, for all x ∈ R. It is a

fact that D and E are linear maps.

7.(a). Show that D is surjective, but not injective.

7.(b). Show that E is injective, but not surjective.
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10 points

8. True or False. Mark T for true and F for false.

8.(a) Let f : V → V be a linear map of a vector space to itself. If f is surjective,

then f is an isomorphism.

8.(b) A square matrix A is called an orthogonal matrix if AAT = Id. If A and B

are orthogonal, then AB is orthogonal.

8.(c) If two rows of a square matrix A are equal, then det(A) = 0.

8.(d) If A and B are n× n matrices, then det(AB) = det(A) det(B).

8.(e) If the determinant of a square matrix is zero, then the determinant of its

cofactor matrix is zero.

8.(f) If A is an n×n matrix, then the equation Ax = b has at least one solution for

every b ∈ Rn.

8.(g) If the columns of a square matrix A are linearly independent, then AT is

invertible.

8.(h) Let A be an m× n matrix. Then there exists an m×m permutation matrix

P , an m ×m lower triangular matrix L and an m × n upper echelon form matrix U , such
that PA = LU .

8.(i) If A is a square matrix such that the column sums of the absolute values in A

are less than 1, then (Id−A) is invertible.

8.(j) An n×n matrix is invertible if and only if its column rank is strictly less than

n.
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