INTRODUCTION TO LINEAR ALGEBRA MATH 3130

HOMEWORK 11 SOME SOLUTIONS

SEBASTIAN CASALAINA-MARTIN

1. Review of changing coordinates

Let V be a vector space, and let $v_1, \ldots, v_n \in V$ and $w_1, \ldots, w_n \in V$ be two ordered bases for V. Suppose that we are given expressions for w_1, \ldots, w_n in terms of v_1, \ldots, v_n . In other words, suppose that

w_1	=	$s_{11}v_1$	+	$s_{12}v_2$	+	• • •	+	$s_{1n}v_n$
w_2	=	$s_{21}v_1$	+	$s_{22}v_2$	+		+	$s_{2n}v_n$
÷	÷	:		÷			÷	
w_i	=	$s_{i1}v_1$	+	$s_{i2}v_2$	+		+	$s_{in}v_n$
÷	÷	:		÷			÷	
w_n	=	$s_{n1}v_1$	+	$s_{n2}v_{2}$	+		+	$s_{nn}v_n$

for some real numbers $s_{11}, s_{12}, \ldots, s_{nn}$.

If $(a_1, \ldots, a_n) \in \mathbb{R}^n$ are coordinates for a vector $v \in V$ with respect to the ordered basis v_1, \ldots, v_n (i.e. $v = \sum_{i=1}^n a_i v_i$), then $(b_1, \ldots, b_n) \in \mathbb{R}^n$ are the coordinates for the vector v with respect to the ordered basis w_1, \ldots, w_n (i.e. we also have $v = \sum_{i=1}^n b_i w_i$), if and only if

$$\left(\begin{array}{c} b_1\\ \vdots\\ b_n\end{array}\right) = \left(\left(\begin{array}{ccc} s_{11} & \cdots & s_{1n}\\ \vdots & & \vdots\\ s_{n1} & \cdots & s_{nn}\end{array}\right)^T\right)^{-1} \left(\begin{array}{c} a_1\\ \vdots\\ a_n\end{array}\right)$$

Conversely, if $(b_1, \ldots, b_n) \in \mathbb{R}^n$ are coordinates for a vector $v \in V$ with respect to the ordered basis w_1, \ldots, w_n (i.e. $v = \sum_{i=1}^n b_i w_i$), then $(a_1, \ldots, a_n) \in \mathbb{R}^n$ are the coordinates for the vector v with respect to

Date: April 17, 2013.

the ordered basis v_1, \ldots, v_n (i.e. we also have $v = \sum_{i=1}^n a_i v_i$), if and only if

$$\left(\begin{array}{c}a_{1}\\\vdots\\a_{n}\end{array}\right) = \left(\begin{array}{cc}s_{11}&\cdots&s_{1n}\\\vdots&&\vdots\\s_{n1}&\cdots&s_{nn}\end{array}\right)^{T} \left(\begin{array}{c}b_{1}\\\vdots\\b_{n}\end{array}\right)$$

For brevity, let us use the notation:

$$\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, \quad \mathbf{S} = \begin{pmatrix} s_{11} & \cdots & s_{1n} \\ \vdots & & \vdots \\ s_{n1} & \cdots & s_{nn} \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

In shorthand, we then have

$$\mathbf{b} = \left(\mathbf{S}^T\right)^{-1} \mathbf{a} \text{ and } \mathbf{a} = \mathbf{S}^T \mathbf{b}.$$

We say that:

- (1) The matrix $(\mathbf{S}^T)^{-1}$ is the change of coordinates matrix from the ordered basis v_1, \ldots, v_n to the ordered basis w_1, \ldots, w_n .
- (2) The matrix \mathbf{S}^T is the change of coordinates matrix from the ordered basis w_1, \ldots, w_n to the ordered basis v_1, \ldots, v_n .

2. Problem §4.7 #1

Problem A (Problem §4.7 #1). Let V be a vector space, and suppose that $v_1, v_2 \in V$ and $w_1, w_2 \in V$ are two ordered bases for V. Assume further that

$$w_1 = 6v_1 - 2v_2$$
$$w_2 = 9v_1 - 4v_2.$$

- (a) Find the change of coordinates matrix from the ordered basis w_1, w_2 to the ordered basis v_1, v_2 .
- (b) Find the coordinates for the vector $-3w_1 + 2w_2$ in terms of the ordered basis v_1, v_2 .

Solution to A. The solutions to the problem are:

(a)
$$\begin{pmatrix} 6 & 9 \\ -2 & -4 \end{pmatrix}$$

(b) $(0, -2).$

Here is how we can find these solutions. From what is in the previous section, the first thing to do is to find the matrix S. Since

$$w_{1} = 6v_{1} - 2v_{2}$$

$$w_{2} = 9v_{1} - 4v_{2},$$

$$\mathbf{S} = \begin{pmatrix} 6 & -2 \\ 9 & -4 \end{pmatrix}$$

Thus the solution to part (a) is the matrix

we have that

$$\mathbf{S}^T = \left(\begin{array}{cc} 6 & 9\\ -2 & -4 \end{array}\right)$$

The solution to part (b) follows directly from this. We have found that the matrix \mathbf{S}^T above is the change of coordinates matrix from the ordered basis w_1, w_2 , to the ordered basis v_1, v_2 . The coordinates for $v = -3w_1 + 2w_2$ in terms of the ordered basis w_1, w_2 are

$$(b_1, b_2) = (-3, 2)$$

Thus the coordinates (a_1, a_2) for $v = -3w_1 + 2w_2$ in terms of the ordered basis v_1, v_2 are

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \mathbf{S}^T \mathbf{b} = \begin{pmatrix} 6 & 9 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

In other words, the answer to (b) is (0, -2).

3. Problem §4.7#8

Problem B. Consider the ordered bases

$$w_1 = \begin{pmatrix} -1 \\ 8 \end{pmatrix}, w_2 = \begin{pmatrix} 1 \\ -7 \end{pmatrix}$$
 and $x_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

for \mathbb{R}^2 . Find the change of coordinates matrix from the ordered basis w_1, w_2 to the ordered basis x_1, x_2 , and conversely, from the ordered basis x_1, x_2 to the ordered basis w_1, w_2 .

Solution to B. We will solve this problem using the algorithm above. The only observation we need to make is that if we set

$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

to be the standard basis vectors in \mathbb{R}^2 , then the expressions for w_1, w_2, x_1, x_2 tell us that

$$w_1 = (-1)v_1 + 8v_2$$

 $w_2 = 1v_1 + (-7)v_2$

and

Now, for instance, to find the change of coordinates matrix from the ordered basis w_1, w_2 to the ordered basis x_1, x_2 , we can first find the change of coordinates matrix from the ordered basis w_1, w_2 to the ordered basis v_1, v_2 , and then find the change of coordinates matrix from the ordered basis v_1, v_2 to the ordered basis x_1, x_2 .

To do this, let us focus for the moment on the ordered basis w_1, w_2 . If we set

$$\mathbf{S}_W = \left(\begin{array}{rrr} -1 & 8\\ 1 & -7 \end{array}\right)$$

then

$$\mathbf{S}_W^T = \begin{pmatrix} -1 & 1 \\ 8 & -7 \end{pmatrix}$$
 is the change of coordinates matrix from w_1, w_2 to $v_1, v_2,$

and

$$\left(\mathbf{S}_{W}^{T}\right)^{-1} = \begin{pmatrix} 7 & 1 \\ 8 & 1 \end{pmatrix}$$
 is the change of coordinates matrix from v_1, v_2 to w_1, w_2 .

Similarly, if we set

$$\mathbf{S}_X = \left(\begin{array}{rrr} 1 & 2 \\ 1 & 1 \end{array}\right)$$

then

$$\mathbf{S}_X^T = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$$
 is the change of coordinates matrix from x_1, x_2 to v_1, v_2, v_3

and

$$\left(\mathbf{S}_X^T\right)^{-1} = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$$
 is the change of coordinates matrix from v_1, v_2 to x_1, x_2 .

Finally, we have

 $\left(\mathbf{S}_X^T\right)^{-1}\mathbf{S}_W^T$

$$= \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 8 & -7 \end{pmatrix} = \begin{pmatrix} 9 & -8 \\ -10 & 9 \end{pmatrix}$$

is the change of coordinates matrix from w_1, w_2 to x_1, x_2 , and

$$\left(\mathbf{S}_{W}^{T}\right)^{-1}\mathbf{S}_{X}^{T}$$

$$= \begin{pmatrix} 7 & 1 \\ 8 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 9 & 8 \\ 10 & 9 \end{pmatrix}$$
 is the change of coordinates matrix from x_1, x_2 to w_1, w_2 .

Remark 3.1. One can come up with a little faster algorithm if one remembers that in this case one is simply looking for the matrices $(\mathbf{S}_X^T)^{-1} \mathbf{S}_W^T$ and $(\mathbf{S}_W^T)^{-1} \mathbf{S}_X^T$. For instance, in the problem above, the algorithm for finding the change of coordinates matrix from the ordered basis x_1, x_2 to the ordered basis w_1, w_2 would be the following. Recall we are given ordered bases

$$w_1 = \begin{pmatrix} -1 \\ 8 \end{pmatrix}, w_2 = \begin{pmatrix} 1 \\ -7 \end{pmatrix}$$
 and $x_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

for \mathbb{R}^2 . To find the change of coordinates matrix from the ordered basis x_1, x_2 to the ordered basis w_1, w_2 , the algorithm says to enter the basis vectors in column form into a matrix:

$$\left(\begin{array}{cc|c} -1 & 1 & 1 & 1 \\ 8 & -7 & 2 & 1 \end{array}\right)$$

In our notation above, this is the matrix

$$\left(\begin{array}{c|c} \mathbf{S}_W^T & \mathbf{S}_X^T \end{array} \right)$$

The algorithm then asks you to row reduce this matrix. This of course gives the matrix

$$\left(\begin{array}{c|c} Id & \mathbf{S}_{W}^{T} \end{array} \right)^{-1} \mathbf{S}_{X}^{T} \end{array} \right) = \left(\begin{array}{c|c} 1 & 0 & 9 & 8 \\ 0 & 1 & 10 & 9 \end{array} \right)$$

and the 2×2 matrix on the right is the matrix we are interested in.