INTRODUCTION TO LINEAR ALGEBRA MATH 3130

HOMEWORK 1

SEBASTIAN CASALAINA-MARTIN

1. Vector spaces

Recall the definition of a real vector space.

Definition 1.1. A real vector space consists of a triple $(V, +, \cdot)$, where V is a set, and $+: V \times V \to V$ and $\cdot: \mathbb{R} \times V \to V$ are maps, satisfying the following properties:

- (1) (Group laws)
 - (a) (Additive identity) There exists an element $O \in V$ such that for all $v \in V$, v + O = v;
 - (b) (Additive inverse) For each $v \in V$ there exists an element $-v \in V$ such that v + (-v) = O;
 - (c) (Associativity of addition) For all $v_1, v_2, v_3 \in V$,

$$(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3);$$

- (2) (Abelian property)
 - (a) (Commutativity of addition) For all $v_1, v_2 \in V$,

$$v_1 + v_2 = v_2 + v_1;$$

- (3) (Module conditions)
 - (a) For all $\lambda \in \mathbb{R}$ and all $v_1, v_2 \in V$,

$$\lambda \cdot (v_1 + v_2) = (\lambda \cdot v_1) + (\lambda \cdot v_2)$$

(b) For all $\lambda_1, \lambda_2 \in \mathbb{R}$, and all $v \in V$,

$$(\lambda_1 + \lambda_2) \cdot v = (\lambda_1 \cdot v) + (\lambda_2 \cdot v).$$

Date: March 5, 2013.

(c) For all $\lambda_1, \lambda_2 \in \mathbb{R}$, and all $v \in V$,

$$(\lambda_1 \lambda_2) \cdot v = \lambda_1 \cdot (\lambda_2 \cdot v).$$

(d) For all $v \in V$,

 $1 \cdot v = v.$

In the above, for all $\lambda \in \mathbb{R}$ and all $v, v_1, v_2 \in V$ we have denoted $+(v_1, v_2)$ by $v_1 + v_2$ and $\cdot(\lambda, v)$ by $\lambda \cdot v$.

In addition, for brevity, we will often write λv for $\lambda \cdot v$.

Remark 1.2. Recall that in class we discussed the example of the vector space $(\mathbb{R}^n, +, \cdot)$. By definition,

$$\mathbb{R}^n = \{ (x_1, \dots, x_n) : x_i \in \mathbb{R}, \ 1 \le i \le n \}.$$

The map $+ : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is defined by the rule $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$ for all $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in \mathbb{R}^n$. The map $\cdot : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is defined by the rule $\lambda \cdot (x_1, \ldots, x_n) = (\lambda x_1, \ldots, \lambda x_n)$ for all $\lambda \in \mathbb{R}$ and $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

Exercise A. Let $(V, +, \cdot)$ be a vector space. Show that if $v \in V$ satisfies v' + v = v' for all $v' \in V$, then v = O, the additive identity.

Exercise B. Show the following properties hold for all $v, v_1, v_2 \in V$ and all $\lambda, \lambda_1, \lambda_2 \in \mathbb{R}$.

- (1) 0v = O.
- (2) $\lambda O = O$.
- (3) $(-\lambda)v = -(\lambda v) = \lambda(-v).$
- (4) If $\lambda v = O$, then either $\lambda = 0$ or v = O.
- (5) If $\lambda v_1 = \lambda v_2$, then either $\lambda = 0$ or $v_1 = v_2$.
- (6) If $\lambda_1 v = \lambda_2 v$, then either $\lambda_1 = \lambda_2$ or v = O.
- (7) $-(v_1 + v_2) = (-v_1) + (-v_2).$
- (8) v + v = 2v, v + v + v = 3v, and in general $\sum_{i=1}^{n} v = nv$.

Exercise C. Consider the set of functions from \mathbb{R} to itself. Let us denote this set by $Map(\mathbb{R}, \mathbb{R})$. Define addition and multiplication maps

$$+: \operatorname{Map}(\mathbb{R}, \mathbb{R}) \times \operatorname{Map}(\mathbb{R}, \mathbb{R}) \to \operatorname{Map}(\mathbb{R}, \mathbb{R})$$

and

$$\cdot: \mathbb{R} \times \operatorname{Map}(\mathbb{R}, \mathbb{R}) \to \operatorname{Map}(\mathbb{R}, \mathbb{R})$$

in the following way. For all $f, g \in \operatorname{Map}(\mathbb{R}, \mathbb{R})$, set f+g to be the function defined by (f+g)(x) = f(x)+g(x)for all $x \in \mathbb{R}$. For all $\lambda \in \mathbb{R}$ and all $f \in \operatorname{Map}(\mathbb{R}, \mathbb{R})$, set $\lambda \cdot f$ to be the function defined by $(\lambda \cdot f)(x) = \lambda f(x)$ for all $x \in \mathbb{R}$. Show that $(\operatorname{Map}(\mathbb{R}, \mathbb{R}), +, \cdot)$ is a vector space.

2. Sub-vector spaces

Recall the definition of a sub-vector space.

Definition 2.1. Let $(V, +, \cdot)$ be a (real) vector space. A (real) sub-vector space of $(V, +, \cdot)$ is a (real) vector space $(V', +', \cdot')$ such that $V' \subseteq V$ and such that for all $v', v'_1, v'_2 \in V'$ and all $\lambda \in \mathbb{R}$,

$$v_1' + v_2' = v_1' + v_2'$$
 and $\lambda \cdot v' = \lambda \cdot v'.$

Definition 2.2. If $(V, +, \cdot)$ is a vector space, and $V' \subseteq V$ is a subset, we say that V' is **closed under** + (resp. closed under \cdot) if for all $v'_1, v'_2 \in V'$ (resp. for all $\lambda \in \mathbb{R}$ and all $v' \in V'$) we have $v'_1 + v'_2 \in V'$ (resp. $\lambda \cdot v' \in V'$). In this case, we define $+|_{V'}: V' \times V' \to V'$ (resp. $\cdot|_{V'}: \mathbb{R} \times V' \to V'$) to be the map given by $v'_1 + |_{V'}v'_2 = v'_1 + v'_2$ (resp. $\lambda \cdot |_{V'}v' = \lambda \cdot v'$), for all $v'_1, v'_2 \in V'$ (resp. for all $\lambda \in \mathbb{R}$ and all $v' \in V'$).

Remark 2.3. Note that if $(V', +', \cdot')$ is a sub-vector space of $(V, +, \cdot)$, then V' is closed under + and \cdot .

Exercise D. Show that if a non-empty subset $V' \subseteq V$ is closed under + and \cdot , then $(V', +|_{V'}, \cdot|_{V'})$ is a sub-vector space of $(V, +, \cdot)$.

Exercise E. Show that if $(V', +', \cdot')$ is a sub-vector space of a vector space $(V, +, \cdot)$, then the additive identity element $O' \in V'$ is equal to the additive identity element $O \in V$.

Exercise F. Recall the vector space $(Map(\mathbb{R},\mathbb{R}),+,\cdot)$ from Exercise C. In this exercise, show that the subsets of $Map(\mathbb{R},\mathbb{R})$ listed below are closed under + and \cdot , and so define sub-vector spaces of $(Map(\mathbb{R},\mathbb{R}),+,\cdot)$.

(1) **Problem removed.**

- (2) The set of all polynomial functions.
- (3) The set of all polynomial functions of degree less than n.
- (4) The set of all functions that are continuos on an interval $(a, b) \subseteq \mathbb{R}$.
- (5) The set of all functions differentiable at a point $a \in \mathbb{R}$.
- (6) The set of all functions differentiable on an interval $(a, b) \subseteq \mathbb{R}$.
- (7) The set of all functions with f(1) = 0.
- (8) The set of all solutions to the differential equation f'' + af' + bf = 0 for some $a, b \in \mathbb{R}$.

Exercise G. In this exercise, show that the subsets of $Map(\mathbb{R}, \mathbb{R})$ listed below are NOT closed under + and \cdot , and so do not define sub-vector spaces of $(Map(\mathbb{R}, \mathbb{R}), +, \cdot)$.

- (1) Fix a real number $a \neq 0$. The set of all functions with f(1) = a.
- (2) The set of all solutions to the differential equation f'' + af' + bf = c for some $a, b, c \in \mathbb{R}$ with $c \neq 0$.

3. LINEAR MAPS

Recall the definition of a linear map.

Definition 3.1. Let $(V, +, \cdot)$ and $(V', +', \cdot')$ be vector spaces. A linear map $F : (V, +, \cdot) \to (V', +', \cdot')$ is a map of sets

$$f: V \to V'$$

such that for all $\lambda \in \mathbb{R}$ and $v, v_1, v_2 \in V$,

$$f(v_1 + v_2) = f(v_1) + f(v_2)$$
 and $f(\lambda \cdot v) = \lambda \cdot f(v)$.

Note that we will frequently use the same letter for the linear map and the map of sets. Recall that $(V, +, \cdot)$ is called the **source** (or domain) of the linear map and $(V', +', \cdot')$ is called the **target** (or codomain) of the linear map. The set $f(V) \subseteq V'$ is called the **image** (or range) of f.

Exercise H. Let $f: (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of vector spaces. Show that the image of f is closed under $+', \cdot'$, and so defines a sub-vector space of the target $(V', +', \cdot')$.

Exercise I. Let $f: (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of vector spaces. Show that f(O) = O'.

Exercise J. Show that the following maps of sets define linear maps of the vector spaces.

- (1) Let $(V, +, \cdot)$ be a vector space. The identity map $f: V \to V$ given by f(v) = v for all $v \in V$. This linear map will frequently be denoted by Id_V .
- (2) Let $(V, +, \cdot)$ be a vector space. The zero map $f : V \to V$ given by f(v) = O for all $v \in V$. This linear map will frequently be denoted by O_V .
- (3) Let $(V, +, \cdot)$ be a vector space and let $\alpha \in \mathbb{R}$. The multiplication map $f: V \to V$ given by $f(v) = \alpha \cdot v$ for all $v \in V$. This linear map will frequently be denoted by $\alpha \operatorname{Id}_V$.
- (4) Let $(V, +, \cdot) = \mathbb{R}^n$, let $(V', +', \cdot') = \mathbb{R}^m$, and let $a_{ij} \in \mathbb{R}$ for $1 \le i \le m$ and $1 \le j \le n$. Define a map $f : \mathbb{R}^n \to \mathbb{R}^m$ by

$$f(x_1, \dots, x_n) = \left(\sum_{j=1}^n a_{1j} x_j, \dots, \sum_{j=1}^n a_{ij} x_j, \dots, \sum_{j=1}^n a_{mj} x_j\right)$$

- (5) Let $(V, +, \cdot)$ be the vector space of all differentiable real functions. Let $(V', +', \cdot')$ be the vector space of all real functions. The map $f : (V, +, \cdot) \to (V', +', \cdot')$ that sends a differentiable function g to its derivative g'.
- (6) Let $(V, +, \cdot)$ be the vector space of all continuous real functions. The map $f : (V, +, \cdot) \to (V, +, \cdot)$ that sends a function $g \in V$ to the function in V determined by

$$f(g)(x) := \int_{a}^{x} g(t)dt.$$

Show also that f in fact sends V to V.

Recall the definition of the kernel of a linear map.

Definition 3.2. Let $f: (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of vector spaces. The **kernel of** f (or Null space of f), denoted ker(f), is the set

$$\ker(f) := f^{-1}(O') = \{ v \in V : f(v) = O' \}.$$

Exercise K. Let $f: (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of vector spaces. Show that ker(f) is a sub-vector space of $(V, +, \cdot)$.

Exercise L. Find the kernel of each of the linear maps listed below (see Problem J).

- (1) The linear map Id_V .
- (2) The linear map O_V .
- (3) The linear map $\alpha \operatorname{Id}_V$.
- (4) Let $(V, +, \cdot) = \mathbb{R}^n$, let $(V', +', \cdot') = \mathbb{R}^m$, and let $a_{ij} \in \mathbb{R}$ for $1 \le i \le m$ and $1 \le j \le n$. The linear map $f : \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$f(x_1, \dots, x_n) = \left(\sum_{j=1}^n a_{1j} x_j, \dots, \sum_{j=1}^n a_{ij} x_j, \dots, \sum_{j=1}^n a_{mj} x_j\right)$$

- (5) Let (V, +, ·) be the vector space of all differentiable real functions. Let (V', +', ·') be the vector space of all real functions. The linear map f : (V, +, ·) → (V', +', ·') that sends a differentiable function g to its derivative g'.
- (6) Let $(V, +, \cdot)$ be the vector space of all continous real functions. The linear map $f: (V, +, \cdot) \to (V, +, \cdot)$ that sends a function $g \in V$ to the function in V determined by

$$f(g)(x) := \int_{a}^{x} g(t)dt.$$