SAMPLE MIDTERM II ANALYSIS 1

MATH 3100

Friday November 8, 2013
\qquad

Please answer all of the questions, and show your work.
All solutions must be explained clearly to receive credit.

1	2	3	4	5	
10	10	10	10	10	Total

1
10 points

1. Show that the image of a compact set under a continuous map is compact; i.e. if $S \subseteq \mathbb{R}$, $f: S \rightarrow \mathbb{R}$ is a continuous map, and $K \subseteq S$ is compact, then $f(K) \subseteq \mathbb{R}$ is compact.

EXTRA CREDIT: Prove this for arbitrary topological spaces. In other words, show that if $f: X \rightarrow Y$ is a continuous map of topological spaces and $K \subseteq X$ is compact, then $f(K)$ is compact.
2. Define a sequence $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ recursively by $s_{1}=\sqrt{12}$ and $s_{n+1}=\sqrt{12+s_{n}}$ for all $n \in \mathbb{N}$. Show that this sequence converges and find the limit. [Hint: Show the sequence is monotone and bounded.]
3.(a). Let $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ be a bounded sequence. Define the limit inferior, $\lim \inf \left\{s_{n}\right\}$.
3.(b). Let $s_{n}=3 \sin ^{2}(n \pi / 2)$. Find the limit superior and limit inferior of the sequence $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ (you must show your work, but you do not need to give a detailed proof).
4. Show that if f is continuous, then $|f|$ is continuous; i.e. if $S \subseteq \mathbb{R}$ and $f: S \rightarrow \mathbb{R}$ is a continuous map, then $|f|: S \rightarrow \mathbb{R}$ is also a continuous map. Recall that by definition, for each $x \in S,|f|(x):=|f(x)|$.
5. True or False. You do NOT need to justify your answer.

5
10 points

\square 5.(a) A union of compact sets is compact.

5.(b) If $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of positive numbers and $\lim s_{n+1} / s_{n}=L<1$, then the sequence $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ converges to 0 .
\square 5.(c) If $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of positive numbers and if $\lim s_{n+1} / s_{n}=1$, then the sequence $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ does not converge.

5.(d) A monotone bounded sequence is convergent.

5.(e) Every bounded monotone sequence is Cauchy.

5.(f) The image of a closed set under a continuous map is closed.

5.(g) Let C be a non-empty subset of \mathbb{R}. C is compact if and only if every sequence in C has a subsequence that converges to a point in C.
\square 5.(h) Let $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ be bounded sequences. Then

$$
\lim \sup \left\{s_{n}+t_{n}\right\}=\lim \sup \left\{s_{n}\right\}+\lim \sup \left\{t_{n}\right\}
$$

\square 5.(i) Let $S \subseteq \mathbb{R}$, let $f: S \rightarrow \mathbb{R}$ and let $c \in \mathbb{R}$ be a limit point of S. Then $\varlimsup_{x \rightarrow c} f(x)=L$ if and only if for every sequence $\left\{s_{n}\right\}$ in S that converges to c, with $s_{n} \neq c$ for all n, the sequence $\left\{f\left(s_{n}\right)\right\}$ converges to L.
\square 5.(j) If f and g are continuous functions (with common domain), then $f+g$ is a continuous function.

