
6360 HW

SEBASTIAN CASALAINA-MARTIN

Abstract. This is a running list of homework assigned in class.

1. January

Exercise 1.1. Prove the chain rule: Suppose

f : Rn → Rm and g : Rm → R`

are differentiable at p and f(p) respectively. Then show that g ◦ f is differentiable at p, and
D(g ◦ f)p = Dgf(p) ◦Dfp.

Exercise 1.2. Consider the function q : R→ R defined by

q(x) =

{
0 if x ∈ Q,
1 if x /∈ Q.

Define f(x) = x2q(x). Show that f ′(0) = 0, but that f(x) is not even continuous (let alone
differentiable) at any x 6= 0.

Exercise 1.3. Consider the function s : R→ R defined by

s(x) =

{
0 if x = 0,

sin(1/x) if x 6= 0.

Define f(x) = x2s(x). Show that f ′(0) = 0, that f(x) is differentiable at each x ∈ R, but
that f ′(x) is not continuous at 0.

Exercise 1.4. Consider the function f : R→ R defined by

f(x, y) =

{
2xy
x2+y2

if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Show that f is differentiable at each point other than the origin. Show that

∂f/∂x(0, 0) = ∂f/∂y(0, 0) = 0.

Thus the partials ∂f/∂x and ∂f/∂y exist on R2. Show, however, that f(x, x) = 1 for all
x 6= 0, so that f is not continuous at (0, 0) (let alone differentiable).

Let p ∈ Rn. Consider the set

S := {(f, U)p : p ∈ U ⊆ Rn, f : U → R}.
Define an equivalence relation on the set by the rule

(f, U)p ∼ (g, V )p
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if there exists an open neighborhood of p, W ⊆ U ∩ V such that f |W = gW . We then define
the set of germs of functions at p to be the quotient S by this equivalence relation.

Map(Rn,R)p := S/ ∼ .

We refer to the elements as germs of functions on Rn at p.

Exercise 1.5. Show that ∼ is an equivalence relation. For (f, U)p and (g, V )p germs of
functions, define

(f, U)p + (g, V )p = (f |U∩V + g|U∩V , U ∩ V )p.

Define multiplication of germs similarly. Show that this gives the set of germs a ring structure
(you must first show that this gives a well defined addition map for germs, etc.). Define a
map R→ Map(Rn,R)p by r 7→ (r,Rn)p. Show that this is a homomorphism of rings, and so
this defines an R-algebra structure on the ring.

Exercise 1.6. For an open set U ⊆ Rn, we denote by C∞(U) the set of real valued smooth
functions on U . That is, the functions that have continuous partial derivatives of all order.
Define the set of germs of smooth functions at a point p ∈ Rn similarly. Show that this has
a similar structure as an R-algebra. We will denote this by C∞(U)p.

We denote the set of all A-derivations of B into M by DerA(B,M).

Exercise 1.7. Let A be a commutative ring with unity, let B be an A-algebra, and let M
be a B-module. Show that DerA(B,M) has a natural structure as an A-module. (I.e.
(D1 +D2)(b) := D1(b) +D2(b), etc.)

Exercise 1.8. If f : U → Rm is a C∞ map, with U ⊆ Rn an open subset, and p ∈ U , then
show there is a linear map

Tpf : TpRn → Tf(p)Rm

given by

D 7→ Tpf(D)

where

Tpf(D)
[
(g, V )f(p)

]
:= D

[
(g ◦ f, f−1(V ))p

]
∈ R.

Exercise 1.9. For each i = 1, . . . , n we have a map ∂/∂xi defined by the rule that for a
smooth germ (f, U)p,

∂

∂xi
(f, U)p :=

∂f

∂xi
(p).

Show that ∂/∂xi is a derivation.

Exercise 1.10. From what we have shown in class, we have a diagram

TpRn Tpf−−−→ TpRmy y
Rn Dfp−−−→ Rm,

where the vertical arrows are isomorphisms induced by a choice of co-ordinates. Show that
the diagram is commutative. [Hint: use the Jacobian matrix.]
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Exercise 1.11. Show that the group of two by two real conformal matrices can be described
as:

CO(2,R) =

{(
a b
−b a

)
: (a, b) ∈ R2 − {0}

}
.

Recall the statement of the implicit function theorem.

Theorem 1.12 (Implicit function theorem). Let U be an open subset of Rn and let f : U →
Rm be in Cr(U,Rm), where n ≥ m. Fix a point p ∈ f−1(0). Consider the “vertical” affine
m space V passing through p; more precisely set:

V := {p′ ∈ Rn : x1(p
′) = p1, . . . , xn−m(p′) = pn−m}.

If

TpV ∩ kerDfp = 0,

then there exists a neighborhood U ′ ⊆ U of p, a neighborhood W of (p1, . . . , pn−m) in Rn−m

and a Cr(W,Rm) map g such that

f−1(0) ∩ U ′ = Γg := {(x, g(x) : x ∈ W}.

In other words, f−1(0) is locally the graph of a Cr function in the first n−m coordinates.

Exercise 1.13. Suppose that dim kerDfp = n−m and TpV ∩ kerDfp 6= 0. Show that there
does not exits a neighborhood W of (p1, . . . , pn−m) and a smooth function g : W → Rn such
that f−1(0) is locally the graph of g. [Hint: First consider the composition f ◦ (Id × g).
Then consider a path γ : (a, b) → Rn through p, lying on the graph Γg, with non-trivial
tangent vector. Show that there is some i ∈ 1, . . . , n − m such that γ′i(t) 6= 0. In other
words, γ′(t) /∈ TpV .]

Exercise 1.14. Consider the example with f(x, y) = x − y3. Show that TpV ∩ kerDfp 6= 0,
but there exits a neighborhood W of the origin in R and a function g : W → R such that
f−1(0) is locally the graph of g.

Exercise 1.15. Let f : Rn → Rm be a C∞ morphism such that Dfp is surjective for some
p ∈ f−1(0). Then there is a neighborhood U of p such that f−1(0)∩U is the graph of a C∞

function (not necessarily in the first n − m coordinates). Note the condition that Dfp be
surjective can be replaced with the condition that dim ker(Dfp) = n −m. [Hint: consider
precomposing f with a linear isomorphism L : Rn → Rn.]

Exercise 1.16. Show that there exist functions f satisfying all the conditions of the theorem,
except that TpV ∩ kerDfp 6= 0, but with the property that f−1(0) is still locally the graph
of a function in the first n− r coordinates. [Hint: consider the function f(x, y) = (x− y)2.
Note that in this example dim kerDfp > n−m.]

Exercise 1.17. If you know the definition of a manifold: show that the function f(x, y) = y2−
x3 satisfies all of the conditions of the theorem, except that we have dim kerDf0 > n−m = 1
(and of course TpV ∩ kerDfp 6= 0). Show that f−1(0) is not a sub-manifold of R2.

Exercise 1.18. Show that there is an isomorphism of rings

φ : C→ ĈO(2,R)
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given by

a+ ib 7→
(

a b
−b a

)
.

Recall that ĈO(2,R) is the union of the conformal matrices with the zero matrix, and addi-
tion and multiplication on this ring are given in terms of matrix addition and multiplication.

Exercise 1.19. Consider a linear map

A : R2 → R2.

We then get a diagram

R2 A−−−→ R2∥∥∥ ∥∥∥
C C.

Show that there exists a linear map α ∈ M(1,C) = C making the above diagram commute

if and only if A ∈ ĈO(2,R).

Exercise 1.20. Identifying C with R2, a C∞ function fC : C → C is C-differentiable at

ζ = a+ ib if and only if (DfR)(a,b) ∈ ĈO(2,R).

Exercise 1.21. Let f : U → C be a holomorphic map. Suppose that f ′(ζ) 6= 0 for some
ζ ∈ U . Then f is a local holomorphic isomorphism near ζ. More precisely, there exists an
open neighborhood U ′ ⊆ U of ζ such that V := f(U ′) is an open neighborhood of f(ζ), f |U ′
is one-to-one, and the set map f−1 is in fact holomorphic on V .

Exercise 1.22. Consider a function f : U → C. Write

f(x+ iy) = u(x, y) + iv(x, y)

for some u, v that are real valued functions of real numbers. Suppose that ∂u
∂x
, ∂v
∂y
, ∂v
∂x
, ∂u
∂y

exist

and are continuous in a neighborhood V of (a, b). Show f is C-differentiable at ζ = a+ ib if
and only if the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y

hold at (a, b). Consequently, f is holomorphic in V if and only if the Cauchy-Riemann
equations hold at each point of V .

Exercise 1.23. Find a function f(z) that is holomorphic on a connected open set U , such
that there does not exist a function F (z) holomorphic on U such that F ′(z) = f(z). [Hint:
consider the domain of definition of log z.]

Exercise 1.24. Let S be a subset of a topological space X. Show that the closure of S (the
intersection of all closed subsets containing S) is equal to the set of points p ∈ X such that
for every open neighborhood U of p, U ∩X 6= ∅.

Exercise 1.25. Recall that a limit point (or accumulation point) p of a subset S of a topo-
logical space X is a point p ∈ X such that for every open set U containing p, there exists
q ∈ U ∩ S with q 6= p. Show the closure of a set S is the disjoint union of S with those limit
points not in S. Thus a set is closed if and only if it contains all of its limit points.
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Exercise 1.26. The set of limit points of a closed set is closed.

Exercise 1.27. Find a topological space X and a subset S ⊆ X such that the set of limit
points of S is not closed.

Exercise 1.28. Let X be a T1 topological space. Show that the limit set of any subset of X
is closed.

2. February

Exercise 2.1. Suppose that U is a simply connected subset of R2, and u ∈ C2(U) is harmonic.
Then we showed there exists a harmonic function v ∈ C2(U) such that

f(z) := u+ iv

is holomorphic. In particular, u ∈ C∞(U).
Show that the statement is false without the assumption that U be simply connected.

[Hint: consider u = ln |z|. Then if ln |z|+ iv is analytic, then v(z) = Arg z + a except along
the non-positive real axis.]

Exercise 2.2. Suppose that u ∈ H(U) is a harmonic function. For a ∈ U , and

p ∈ V (u− a) := {(x, y) ∈ U : u(x, y)− a = 0}
show that if Tpu 6= 0, then V (u − a) is a smooth curve in the plane near p. That is to say,
there exists an open neighborhood U ′ of p in U , an open interval 0 ∈ (a, b) ⊆ R and a C∞

map
γ : (a, b)→ R2

such that γ(0) = p and V (u− a) ∩ U ′ = γ((a, b)). [Hint: use the implicit function theorem]

Exercise 2.3. In the notation of the previous exercise, assume that U is simply connected,
let v be the harmonic conjugate of u, and assume p ∈ V (v) and p ∈ V (u). Let δ be the C∞

map defining the smooth zero set of v near p. Show that Image(T0γ) ⊥ Image(T0δ). In
other words, the level sets of the harmonic conjugate are orthogonal to the level sets of the
harmonic function.

Exercise 2.4. Use the previous problem to show that if u is harmonic on a simply connected
open set, and F is the vector field given by the differential of u (that is the gradient vector
field), then the harmonic conjugate v of u has level sets that are parallel to the vector field
F .

Exercise 2.5. Show that the Poisson kernel

P (r, t) :=
∑
n∈Z

r|n|eint = lim
N→∞

N∑
n=−N

r|n|eint

converges (abosolutely) uniformly for all 0 ≤ r < 1 and satisfies the following properties.

(1) For each θ ∈ C, we have

P (r, θ − t) = Re

[
eit + z

eit − z

]
=

(1− r2)

1− 2r cos(θ − t) + r2
.

Note that it follows that P (r, t) ≥ 0.
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(2) For f continuous on C, and setting ζ = reiθ, we have

uf (ζ) =
1

2π

∫ 2π

0

P (r, θ − t)f(eit)dt.

(3) For a trigonometric polynomial g, ūg ∈ C(B̄).
(4) We have

1

2π

∫ 2π

0

P (r, θ − t)dt = 1.

Exercise 2.6. Let f : U → C be a smooth map. Then there is an induced map

Tpf : TC
p U → TC

f(p)C.

Show that f is holomorphic if and only if this map takes T h to T h.

Exercise 2.7. Let f : U → V be a continuous map of open subsets of the complex plane.
Show that f is holomorphic if and only if for every g ∈ O(V ), f ∗g ∈ O(U).

Exercise 2.8. Show that the fractional linear transformations form a group under composition
isomorphic to PGL2(C).

Exercise 2.9. Show that any fractional linear transformation can be decomposed into the
composition of maps of the form f(z) = z + b, f(z) = az and f(z) = 1/z.

Exercise 2.10. Show that the maps f(z) = z + b and f(z) = az send lines to lines, and
circles to circles. Show that the map f(z) = 1/z sends a line to either a line or a circle
(depending on whether the line passes through zero), and sends a circle to either a line or
circle (depending on whether the circle passes through zero). Conclude that fractional linear
transformations send circles and lines to circles and lines.

Exercise 2.11 (Turn in). Let πN : (Σ − {N}) → R2 and πS : (Σ − {S}) → R2 be the
projections from the north and south poles respectively of the unit sphere Σ.

Let U1 = U2 = C, and define map

φ1 : U1 → (Σ− {N})
by φ1(z1) = π−1

N (z1) (where we have identified C with R2). Define a map

φ2 : U2 → (Σ− {S})
by φ2(z2) = π−1

S (z̄2). Show that the composition

(U1 − {0})
φ1→ Σ− {N,S}

φ−1
2→ (U2 − {0})

is given by z2 = 1/z1.

Exercise 2.12. Find a series centered at 0 that has radius of convergence 1, but does not
converge at any point of |z| = 1. Find a series centered at 0 that has radius of convergence
1 and does converge at all |z| = 1.

Exercise 2.13. Using taylor’s theorem applied to a branch of ln(1 + z/n) prove that

lim
n→∞

(
1 +

z

n

)n
= ez

uniformly on compact sets.
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Exercise 2.14. Show that the series

ζ(s) =
∞∑
i=1

n−s

converges uniformly on compact sets with Re s > 1 and represent its derivative in series
form.

Exercise 2.15. Show that the Laurent development of a function is unique.

Exercise 2.16. Find the Laurent series expansion for 1/(z−1)(z−2) in the region 1 < |z| < 2.

Exercise 2.17. Show that the series ∑
n6=0

z

n(z − n)

converges absolutely uniformly on compact subsets of C− Z.

Exercise 2.18 (Turn in). Show that the Laurent development for (ez − 1)−1 at the origin is
of the form

1

z
− 1

2
+
∞∑
k=1

(−1)k−1 Bk

(2k)!
z2k−1

for some numbers Bk. These are the Bernoulli numbers. Calculate B1, B2, B3.

Exercise 2.19 (Turn in). Express the Taylor development of tan z and the Laurent develop-
ment of cot z in terms of the Bernoulli numbers. [Hint: it may be useful to use the relation
tan z = cot z − 2 cot 2z.]

Exercise 2.20 (Turn in). Comparing coefficients in the Laurent developments of cotπz and
of its expression as a sum of partial fractions, find the values of ζ(2), ζ(4), ζ(6).

Exercise 2.21 (Turn in). More generally, show that

ζ(2k) = 22k−1 Bk

(2k)!
π2k.

Exercise 2.22. Show that
∞∏
n=2

(
1− 1

n2

)
=

1

2
.

Exercise 2.23. Show that if A is a subset of Rn with no limit points, then it is countable.

Exercise 2.24. Let Z be the zero set of a non-zero entire function f . Show that if Z is infinite
there is an enumeration a1, . . . of the points of Z such that limn→∞ ak =∞.

Exercise 2.25. Show that
∞∏
k=1

(
1 +

z

n

)
e−z/n

converges uniformly on compact subsets of C.

Exercise 2.26. Suppose that an → ∞ and that An are arbitrary complex numbers. Show
that there exists an entire function f(z) which satisfies f(an) = An.
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Exercise 2.27. Let S be a set, and let {fk : S → R} be a sequence of bounded functions such
that

∞∑
k=1

fk(s)

converges uniformly on S. Let f : S → R be the limit function. Show that f is bounded.
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