6360 HW
SEBASTIAN CASALAINA-MARTIN

ABSTRACT. This is a running list of homework assigned in class.

1. JANUARY

Ezercise 1.1. Prove the chain rule: Suppose
f:R*"—-R™ and g:R™—R*
are differentiable at p and f(p) respectively. Then show that g o f is differentiable at p, and
D(go f)y = Dygsp) o Dfy.
Exercise 1.2. Consider the function ¢ : R — R defined by

0 ifzeQ,
q<x>:{1 if 2 ¢ Q.

Define f(x) = z%q(x). Show that f/(0) = 0, but that f(z) is not even continuous (let alone
differentiable) at any = # 0.

Exercise 1.3. Consider the function s : R — R defined by
s(x) = 0 ifz=0,
| sin(1/z) if x #0.

Define f(x) = x?s(x). Show that f’(0) = 0, that f(z) is differentiable at each z € R, but
that f'(x) is not continuous at 0.

Ezercise 1.4. Consider the function f : R — R defined by

_ xQQxZgJP if (133/) 7é (0,0),
f(x’w_{ ™0 i () = (0,0).

Show that f is differentiable at each point other than the origin. Show that
df/0x(0,0) = df/0y(0,0) = 0.

Thus the partials df/dz and 9f /0y exist on R?. Show, however, that f(x,z) = 1 for all
x # 0, so that f is not continuous at (0,0) (let alone differentiable).

Let p € R™. Consider the set
S ={(f,U),:pecUCR" f:U — R}
Define an equivalence relation on the set by the rule

(f7 U)P ~ (97 V)P
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if there exists an open neighborhood of p, W C U NV such that f|w = gw. We then define
the set of germs of functions at p to be the quotient S by this equivalence relation.

Map(R",R), := S/ ~ .
We refer to the elements as germs of functions on R” at p.

Ezercise 1.5. Show that ~ is an equivalence relation. For (f,U), and (g,V’), germs of
functions, define

<f7 U)p + (97 V)p = (f’UﬂV + g‘UﬁVa un V)p

Define multiplication of germs similarly. Show that this gives the set of germs a ring structure
(you must first show that this gives a well defined addition map for germs, etc.). Define a
map R — Map(R",R), by r — (r,R™),. Show that this is a homomorphism of rings, and so
this defines an R-algebra structure on the ring.

Ezxercise 1.6. For an open set U C R"™, we denote by C*(U) the set of real valued smooth
functions on U. That is, the functions that have continuous partial derivatives of all order.
Define the set of germs of smooth functions at a point p € R” similarly. Show that this has
a similar structure as an R-algebra. We will denote this by C*(U),.

We denote the set of all A-derivations of B into M by Der4 (B, M).

Exercise 1.7. Let A be a commutative ring with unity, let B be an A-algebra, and let M
be a B-module. Show that Der,(B, M) has a natural structure as an A-module. (Le.
(Dl + DQ)(b) = Dl(b) + DQ(b)7 etc.)

Ezercise 1.8. If f: U — R™ is a C* map, with U C R™ an open subset, and p € U, then
show there is a linear map
Tpf : T,R" — Ty R™
given by
D — T,f(D)
where

T,f(D) [<97 V)f(p)} =D [(9 o f, fﬁl(v))p} cR.

Ezercise 1.9. For each ¢ = 1,...,n we have a map 0/0z; defined by the rule that for a
smooth germ (f,U),,

9 _of
G 0= 5 (0)

Show that 0/0x; is a derivation.

Exercise 1.10. From what we have shown in class, we have a diagram

n If m
TR —1 TR

l l

R”» Dfp R™
where the vertical arrows are isomorphisms induced by a choice of co-ordinates. Show that

the diagram is commutative. [Hint: use the Jacobian matrix.]
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Exercise 1.11. Show that the group of two by two real conformal matrices can be described
as:

CO(2,R) = {( _“b 2 ) : (a,b) € R* — {0}}.
Recall the statement of the implicit function theorem.

Theorem 1.12 (Implicit function theorem). Let U be an open subset of R™ and let f : U —
R™ be in C"(U,R™), where n > m. Fiz a point p € f~(0). Consider the “vertical” affine
m space V' passing through p; more precisely set:

Vi={p'eR" :2:(p)) =p1,- -, Toen(p) = Pr—in }-

If
T,V Nker Df, = 0,

then there exists a neighborhood U' C U of p, a neighborhood W of (p1,...,Dn—m) in R*™™
and a C"™(W,R™) map g such that

fHO)NU =T, = {(z,g(x) : 2 € W}
In other words, f~1(0) is locally the graph of a C" function in the first n —m coordinates.

Fzercise 1.13. Suppose that dimker D f, = n —m and T,V Nker D f, # 0. Show that there
does not exits a neighborhood W of (p1,...,pn_m) and a smooth function g : W — R™ such
that f~1(0) is locally the graph of g. [Hint: First consider the composition f o (Id x g).
Then consider a path v : (a,b) — R™ through p, lying on the graph I';, with non-trivial
tangent vector. Show that there is some ¢ € 1,...,n —m such that ~/(t) # 0. In other
words, v'(t) ¢ T,V ]

Ezercise 1.14. Consider the example with f(z,y) = # — y*. Show that T,V Nker Df, # 0,
but there exits a neighborhood W of the origin in R and a function g : W — R such that
f7(0) is locally the graph of g.

Fzercise 1.15. Let f : R® — R™ be a C°° morphism such that Df, is surjective for some
p € f71(0). Then there is a neighborhood U of p such that f~!(0) N U is the graph of a C*
function (not necessarily in the first n — m coordinates). Note the condition that Df, be
surjective can be replaced with the condition that dimker(Df,) = n —m. [Hint: consider
precomposing f with a linear isomorphism L : R" — R™ |

FExercise 1.16. Show that there exist functions f satisfying all the conditions of the theorem,
except that T,V Nker Df, # 0, but with the property that f~'(0) is still locally the graph
of a function in the first n — r coordinates. [Hint: consider the function f(z,y) = (z — y)>.
Note that in this example dimker D f, > n — m.]

Ezercise 1.17. If you know the definition of a manifold: show that the function f(z,y) = y*—
x? satisfies all of the conditions of the theorem, except that we have dimker Dfy > n—m =1
(and of course T,V Nker Df, # 0). Show that f~!(0) is not a sub-manifold of R?.

FExercise 1.18. Show that there is an isomorphism of rings

¢:C—>55(2,R)
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given by

a+ib|—>< ab b).
—b a

Recall that 55(2, R) is the union of the conformal matrices with the zero matrix, and addi-
tion and multiplication on this ring are given in terms of matrix addition and multiplication.

Exercise 1.19. Consider a linear map
A:R?* - R%
We then get a diagram

R2 —4 , R2
C

C.
Show that there exists a linear map a € M(1,C) = C making the above diagram commute

if and only if A € @(Z,R).

Ezercise 1.20. Identifying C with R?, a C* function fc : C — C is C-differentiable at
¢ = a+ib if and only if (D fr)@p € CO(2,R).

Ezercise 1.21. Let f : U — C be a holomorphic map. Suppose that f'(¢) # 0 for some
¢ € U. Then f is a local holomorphic isomorphism near . More precisely, there exists an
open neighborhood U" C U of ¢ such that V := f(U’) is an open neighborhood of f(¢), f|u
is one-to-one, and the set map f~! is in fact holomorphic on V.

Ezercise 1.22. Consider a function f : U — C. Write

fl@ +iy) = u(z,y) +iv(z,y)
for some u, v that are real valued functions of real numbers. Suppose that g—;, %, g—”, % exist
Yy’ dx’ By

and are continuous in a neighborhood V' of (a,b). Show f is C-differentiable at ( = a + ib if
and only if the Cauchy-Riemann equations

ou B ov ov ou

-z d = =_==
or oy % 8r oy
hold at (a,b). Consequently, f is holomorphic in V' if and only if the Cauchy-Riemann

equations hold at each point of V.

Ezercise 1.23. Find a function f(z) that is holomorphic on a connected open set U, such
that there does not exist a function F'(z) holomorphic on U such that F'(z) = f(z). [Hint:
consider the domain of definition of log z.]

Ezercise 1.24. Let S be a subset of a topological space X. Show that the closure of S (the
intersection of all closed subsets containing S) is equal to the set of points p € X such that
for every open neighborhood U of p, U N X # 0.

FEzercise 1.25. Recall that a limit point (or accumulation point) p of a subset S of a topo-
logical space X is a point p € X such that for every open set U containing p, there exists
q € UNS with g # p. Show the closure of a set S is the disjoint union of S with those limit
points not in S. Thus a set is closed if and only if it contains all of its limit points.

4



Ezercise 1.26. The set of limit points of a closed set is closed.

Ezercise 1.27. Find a topological space X and a subset S C X such that the set of limit
points of S is not closed.

Exercise 1.28. Let X be a T topological space. Show that the limit set of any subset of X
is closed.

2. FEBRUARY

Exercise 2.1. Suppose that U is a simply connected subset of R?, and u € C?(U) is harmonic.
Then we showed there exists a harmonic function v € C?(U) such that

f(z) =u+iv

is holomorphic. In particular, u € C*(U).

Show that the statement is false without the assumption that U be simply connected.
[Hint: consider v = In|z|. Then if In |z| 4 v is analytic, then v(z) = Arg z + a except along
the non-positive real axis.]

FEzercise 2.2. Suppose that v € H(U) is a harmonic function. For a € U, and
peV(u—a):={(zx,y) €U :u(z,y) —a=0}

show that if T,u # 0, then V(u — a) is a smooth curve in the plane near p. That is to say,
there exists an open neighborhood U’ of p in U, an open interval 0 € (a,b) C R and a C*
map

7 : (a,b) — R?
such that v(0) = p and V(u —a) N U’ = vy((a,b)). [Hint: use the implicit function theorem]|

Ezercise 2.3. In the notation of the previous exercise, assume that U is simply connected,
let v be the harmonic conjugate of u, and assume p € V(v) and p € V(u). Let 6§ be the C*>
map defining the smooth zero set of v near p. Show that I'mage(Tyy) L Image(Tpd). In
other words, the level sets of the harmonic conjugate are orthogonal to the level sets of the
harmonic function.

Exercise 2.4. Use the previous problem to show that if « is harmonic on a simply connected
open set, and F' is the vector field given by the differential of u (that is the gradient vector
field), then the harmonic conjugate v of u has level sets that are parallel to the vector field
F.

FEzercise 2.5. Show that the Poisson kernel
N

— In| int — 7 In| int
P(rt): Zr e ]\}Enoo Z r™e

nez n=—N
converges (abosolutely) uniformly for all 0 < r < 1 and satisfies the following properties.
(1) For each 6 € C, we have

NP IS S

et —z| 1 —2rcos(f —t)+r?

Note that it follows that P(r,t) > 0.
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2) For f continuous on C, and settin = re'?. we have
( : g :

1 [ A
ulQ) =5 [ P of
T Jo
(3) For a trigonometric polynomial g, @, € C(B).
(4) We have
1 2w
— P(r,0 —t)dt = 1.
2 Jo

Fxercise 2.6. Let f: U — C be a smooth map. Then there is an induced map
T,f : T,U — Tj,C.
Show that f is holomorphic if and only if this map takes 7" to T".

Ezercise 2.7. Let f : U — V be a continuous map of open subsets of the complex plane.
Show that f is holomorphic if and only if for every g € O(V), f*g € O(U).

Exercise 2.8. Show that the fractional linear transformations form a group under composition
isomorphic to PG Ly(C).

FExercise 2.9. Show that any fractional linear transformation can be decomposed into the
composition of maps of the form f(z) = z+b, f(z) =az and f(z) =1/z.

FEzercise 2.10. Show that the maps f(z) = z+ b and f(z) = az send lines to lines, and
circles to circles. Show that the map f(z) = 1/z sends a line to either a line or a circle
(depending on whether the line passes through zero), and sends a circle to either a line or
circle (depending on whether the circle passes through zero). Conclude that fractional linear
transformations send circles and lines to circles and lines.

Exercise 2.11 (Turn in). Let 7y : (¥ — {N}) — R? and 75 : (X — {S}) — R? be the
projections from the north and south poles respectively of the unit sphere X.
Let U; = Uy = C, and define map

¢1:Ur — (2= {N})

by ¢1(z1) = 7' (21) (where we have identified C with R?). Define a map
¢2: Uy — (X = {S})

by ¢o(22) = mg'(Z2). Show that the composition

(U1 - {0}) & T - {N, 5} = (U5 - {0})
is given by zp = 1/2.
FExercise 2.12. Find a series centered at 0 that has radius of convergence 1, but does not

converge at any point of |z| = 1. Find a series centered at 0 that has radius of convergence
1 and does converge at all |z| = 1.

Ezercise 2.13. Using taylor’s theorem applied to a branch of In(1 + z/n) prove that
lim (1+2)" =
n—0o0 n

uniformly on compact sets.



FEzxercise 2.14. Show that the series

o0
((s)=) n*
i=1
converges uniformly on compact sets with Res > 1 and represent its derivative in series
form.
Exercise 2.15. Show that the Laurent development of a function is unique.

FEzercise 2.16. Find the Laurent series expansion for 1/(z—1)(z—2) in the region 1 < |2| < 2.

FEzercise 2.17. Show that the series

>

o n(z —n)
converges absolutely uniformly on compact subsets of C — Z.

Exercise 2.18 (Turn in). Show that the Laurent development for (e* — 1)~}

of the form
11 & B
2 _1)k1_ 2k 2k-1
a2t ;( AT

for some numbers By. These are the Bernoulli numbers. Calculate By, Bs, Bs.

at the origin is

Ezercise 2.19 (Turn in). Express the Taylor development of tan z and the Laurent develop-
ment of cot z in terms of the Bernoulli numbers. [Hint: it may be useful to use the relation
tan z = cot z — 2 cot 22.]

Ezxercise 2.20 (Turn in). Comparing coefficients in the Laurent developments of cot 7z and
of its expression as a sum of partial fractions, find the values of ((2), ((4), {(6).

Ezercise 2.21 (Turn in). More generally, show that

By,
2k — 22]671 2k
FEzxercise 2.22. Show that
ﬁ oty _1
st n2) 2

Exercise 2.23. Show that if A is a subset of R” with no limit points, then it is countable.

Exercise 2.24. Let Z be the zero set of a non-zero entire function f. Show that if Z is infinite
there is an enumeration aq, ... of the points of Z such that lim,,_ ., a; = oco.

FEzxercise 2.25. Show that
H (1 + E) e~/m
n
k=1

converges uniformly on compact subsets of C.

Exercise 2.26. Suppose that a, — oo and that A, are arbitrary complex numbers. Show
that there exists an entire function f(z) which satisfies f(a,) = A,.
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FEzercise 2.27. Let S be a set, and let {f; : S — R} be a sequence of bounded functions such

that -
> fils)
k=1
converges uniformly on S. Let f: S — R be the limit function. Show that f is bounded.
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