
ABSTRACT ALGEBRA 1 (3140) CLASS NOTES

SEBASTIAN CASALAINA-MARTIN

1. Lecture 1

1.1. Preliminaries. This is Abstract Algebra 1, MATH 3140. My
name is Sebastian Casalaina-Martin; you may call me Yano, which is
short for Sebastiano.

All information for the class is available online at my webpage:

http://math.colorado.edu/∼sbc21/

(This will come up as one of the first hits if you type “casalaina”, or
“yano math boulder” into google).

My email is

casa@math.colorado.edu

Please check the website regularly for homework assignments. Also,
there is a syllabus, as well as a webpage with class policies. Please
read these both, and let me know within the first two weeks of class
if you have any special conditions of which I need to be aware, or any
conflicts with scheduled exams due to religious observances.

The textbook for the course is A First Course in Abstract Al-
gebra, Seventh Edition by J.B. Fraleigh [2].

1.2. Historical discussion. I want to begin today’s lecture by giving
a (quasi)-historical introduction to the field of algebra, motivating the
material we will cover in this class. This history is taken from N. Bour-
baki, Elements of mathematics, Algebra I, Chapters 1-3, pp. 180-190
[1]. I refer you all there for more detailed references to the literature.

Among the most fundamental mathematical notions is that of com-
position (that is addition, multiplication, etc.). Documents from the
ancient Egyptians and Babylonians show that they already had a com-
plete system of rules for making computations with (positive) natural
numbers, (positive) rational numbers, lengths and areas. It is worth
noting that in the documents that have survived, there is no indication
of concern for justifying these rules; their validity appears to have been
held from the empirical fact that the rules led to the correct solutions.
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This changed with the ancient Greeks, and their axiomatic approach
to mathematics (particularly geometry). For instance, in Euclid’s El-
ements, he gives formal proofs of a number of rules of calculation. In
contrast, and somewhat surprisingly, the Greek’s focus on mathemati-
cal rigor led to some regression in the techniques of computation (one of
the main problems was that all numbers were associated with lengths
and areas, and hence made abstract computation involving relations of
degree greater than two more difficult).

It was only with the decline of the classical Greek mathematicians
that abstract computation returned as a field of study for the Greeks.
Professional calculators, called “logisticians”, had continued during the
classical era to apply (without formal justification) the rules inherited
from the Egyptians and Babylonians. Recall that the Egyptians had
been “civilized” for around two thousand years before the rise of the
Classical Greek civilization, and the Greeks had borrowed many things
from their (initially at least) more advanced neighbors. In Greece, Dio-
phantus, discarding the notion that numbers must represent geometric
quantities, developed rules of abstract computation; one of these, in
modern language, is equivalent to the formula xmxn = xm+n. It also
appears that Diophantus was the first to use a letter to represent an
unknown in an equation, and begun calculations with negative num-
bers.

One of the first steps forward after this was to develop better math-
ematical notation. The invention of zero and the negative numbers in
India during the High Middle Ages, and the creation of the imaginary
number by the Italian algebraists of the 16th century, are important
examples. One of the striking features of these “inventions” was that
initially, they were introduced formally, without clear understanding
of their meaning outside of their definitions. They were often called
“false”, “absurd”, “impossible”, etc.

I now quote the following passage from Bourbaki:

For the Greeks of the Classical Period, enamoured above
all of clear thought, such extensions were inconceivable;
they could only arise with [people] more disposed than
were the Greeks to display a somewhat mystic faith in
the power of their methods and to allow themselves
to be carried along by the mechanics of their calcula-
tions without investigating whether each step was well
founded; a confidence moreover usually justified a pos-
teriori, by the exact results to which the extension led.
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Although the Indian mathematicians were already aware of interpre-
tations of negative numbers in certain cases (such as commercial debt),
in the following centuries, as the methods and results of the Greek and
Indian mathematicians spread to the West via the Arabs, the manip-
ulation of these numbers became more familiar, and took on further
concrete interpretations (for instance in terms motion).

Meanwhile, in the ninth century, progress in algebra was made in
the middle east. The word “algebra” in fact comes from the Arabic
word “al-jabr”. After a hiatus in Europe, the “Dark Ages”, interest
in Algebra developed again with the progess of the Italian school in
the 16th century. In their work, they gave a solution “by radicals”
of equations of the 3rd and 4th degrees. It was at this point that
they felt compelled, despite their aversions, to introduce the imaginary
numbers. A little later, in the seventeenth century, Descartes and Viete
“perfected” algebraic notation, which is more or less the notation we
use today.

From the middle of the 17th century to the end of the 18th century,
mathematicians focused primarily on the development of calculus. This
began to change in the 19th century, with the work of Lagrange, Gauss,
Cauchy and others. One of the problems which had been confound-
ing mathematicians at the time was that despite the passage of two
centuries, no solution “by radicals” had been found to equations of de-
grees five and higher. The reason for this was settled by an 18 year old
French mathematician named Evariste Galois.

Many of the biographies written about Galois are considered to be
apocryphal. The following account is taken from J. Gallian Contem-
porary Abstract Algebra, pp.168-169 [3], and I make no claim to the
validity of what follows.

Galois was born in 1811, near Paris. He took his first course in
mathematics at age 15, and then quickly mastered the work of Legendre
and Lagrange. At 18, Galois wrote his seminal work on the theory of
equations, to which I alluded a moment ago. This work introduced
what is now called Galois Theory, a central subject in mathematics,
which has led to a tremendous amount of further research. Many of
the basic notions in Group Theory and Field Theory that we will study
in this class trace their roots back to Galois.

Galois is believed to have had a somewhat colorful personality, and
life story. He twice failed the entrance exam to l’Ecole Polytechnique.
He apparently did not know some basic mathematics, and did almost
all computations in his head, making it difficult for the examiners to
follow what he was doing. It is said that during one exam, he became
so annoyed at the stupidity of the examiner, that he threw an eraser
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at him (something hopefully I will not have to experience from any of
you). Galois spent most of the last year and a half of his as a political
prisoner during the French Revolution. In 1832, Galois was shot in a
duel, and died the next day at the age of 20.

One of the main goals of this class will be to study the foundations
of abstract algebra in order to understand Galois’ proof that there is
no solution “in radicals” to polynomials of degree five or greater.

1.3. Review of sets. See Fraleigh [2].

1.4. Introduction to groups. See Fraleigh [2].
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