MATH 232: HOMEWORK 4

DUE FRIDAY MARCH 21

Problems

- (1) Show that every irreducible surface $S \subset \mathbb{P}^n$ (possibly singular) with $\deg(S) \leq n-2$ lies in a hyperplane.
- (2) Let $S \subset \mathbb{P}^n$ be an irreducible surface (possibly singular) of degree n-1, not lying in a hyperplane. Show that S is one of the following:
 - (a) A cone over a projectively normal curve of degree n-1 in \mathbb{P}^{n-1} .
 - (b) The Veronese surface.
 - (c) The surface \mathbb{F}_r embedded by |h+kf| where r = n-1-2k, $k \ge 1$.

[Hint: if S is singular, it is a cone by the previous problem. If it is smooth, show that a smooth hyperplane section H of S is rational, then that the linear system $|K_S + 2H|$ is base point free. Deduce that either $K_S^2 = 9$ and we are in case (b), or $K_S^2 = 8$ and we are in case (c).]

- (3) Let S be a (smooth) surface for which $-K_S$ is ample. Show that either $S = \mathbb{P}^1 \times \mathbb{P}^1$ or S is obtained from \mathbb{P}^2 by blowing up r distinct points, $r \leq 8$ in general position. [Hint: Show that S is rational using Castelnuovo's theorem, and use the fact that if S dominates \mathbb{F}_n for $n \geq 2$, then $-K_S$ is not ample.]
- (4) Let $S \subset \mathbb{P}^n$ be a surface with hyperplane section $H \sim -K_S$. Show that S is either a del Pezzo surface S_d $(3 \leq d \leq 9)$, or the surface S'_8 , the image of $\mathbb{P}^1 \times \mathbb{P}^1$ embedded in \mathbb{P}^8 by the linear system $|2h_1 + 2h_2|$, where the h_i are the classes of the rulings on $\mathbb{P}^1 \times \mathbb{P}^1$.