Homework 2

Due Friday, October 13

Exercises

1. Let $X = V/\Lambda$ be a complex torus. Let $v \in V$ be a representative of $x \in X$, and let $L = L(H, \chi)$ be a line bundle on X. Show

$$t_x^*L(H,\chi) = L(H,\chi exp(2\pi i ImH(v,\cdot))).$$

2. Prove the theorem of the square: For $x, y \in X$ a complex torus,

$$t_{x+y}^*L \cong t_x^*L \otimes t_y^*L \otimes L^{-1}.$$

3. If $f: Y \to X$ is a homomorphism of complex tori, and L is a line bundle on X, show that the following diagram commutes:

$$\begin{array}{ccc} X & \stackrel{\phi_L}{\longrightarrow} & \hat{X} \\ f \uparrow & & \hat{f} \downarrow \\ Y & \stackrel{\phi_{f^*L}}{\longrightarrow} & \hat{Y}. \end{array}$$

- 4. Suppose L_1 and L_2 are line bundles on a complex torus X of dimension g, and L_2 is positive definite. Show that L_1 is positive definite if and only if $L_1^i L_2^{g-i} > 0$ for all $0 \le i \le g$. [Hint: See BL p.76.]
- 5. For a nondegenerate line bundle L on a complex torus X (i.e. $c_1(L)$ is a nondegenerate Hermitian form), show that L is ample if and only if Lis effective. [Hint: Use the theorem stated in class for the cohomology of line bundles on a complex torus.]