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Glossary

This glossary does not pretend to be a course in algebraic geometry. Its purpose is
to put in one easily available place some of the notions and facts that are used in the
text. It can also be used to test of your background: if you can read this glossary, even
if all the assertions are not familiar, you should have enough background in algebraic
geometry to read the text.

1. Schemes and fibered products

A scheme is a ringed space (X,OX) that is locally of the form Spec(A), for A a
commutative ring with unit. For most purposes in this book, one can restrict attention
to the case where A has nice properties, such as Noetherian, or finitely generated over
the ground ring or field.5 Since fibered products play a prominent role, however, one
cannot stay in a category of reduced or irreducible varieties.

An open subscheme of a scheme X is an open subset U of X with its structure
sheaf OU = OX |U . A closed subscheme Y of X is the support of a quasi-coherent
sheaf I of ideals, with the structure sheaf OY = OX/I. A subscheme Y of X is given
by a locally closed subspace Y of X, which is a closed subscheme of the open subscheme
U = X r (Y r Y ).

Given schemes X, Y , and Z, with morphisms f : X → Z and g : Y → Z, there
is a fibered product, which is a scheme X ×Z Y , together with two projections
p : X ×Z Y → X and q : X ×Z Y → Y , with the f ◦ p = g ◦ q. The fibered product
is determined by the following universal property: for any scheme S and morphisms
u : S → X and v : S → Y such that f ◦ u = g ◦ v, there is a unique morphism
(u, v) : S → X ×Z Y such that u = p ◦ (u, v) and v = q ◦ (u, v). If X = Spec(A),
Y = Spec(B), and Z = Spec(C), then X ×Z Y = Spec(A⊗C B). In general, X ×Z Y is
constructed by patching (see below). For clarity, if other morphisms from X or Y to Z
are in use, the notation X f×Z,g Y or X f×g Y may be used for this fibered product.

A diagram

X ′ //

��

X

��
Y ′ // Y

5We give the definitions in their natural generality, following [EGA]; much of the simpler situation
with Noetherian hypotheses, which suffices for most applications, can be found in [47].
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is called cartesian if it commutes, and the resulting morphism from X ′ to Y ′ ×Y X
is an isomorphism. This agrees with the categorical notion of a cartesian diagram; in
particular, X ′ is determined up to canonical isomorphism.

If X → Y is a family of some kind, then X ′ = Y ′×Y X → Y ′ is called the pullback

of the family for the morphism Y ′ → Y . When Y ′ = Spec(κ(y)), for y a point in Y ,
and κ(y) the residue field of the local ring of Y at y, this pullback is the fiber of the
family at y, and is denoted f−1(y). If Y is integral, with K the quotient field of its local
rings, and Y ′ = Spec(K), the pullback is the generic fiber. When Y ′ = Spec(L), with
L an algebraically closed field, the pullback is called a geometric fiber of the family.

For any morphism f : X → Y , there is a canonical diagonal morphism ∆f =
(f, f) : X → X ×Y X.

For any scheme X, there is a contravariant functor hX from the category (Sch)
of schemes to the category (Set) of sets, that takes a scheme S to the set hX(S) =
Hom(S,X) of morphisms from S to X. The elements of hX(S) are called S-valued
points of X. For any scheme S, if hX(S) denotes the set of morphisms from S to X,
there is a canonical bijection

hX×ZY (S) ↔ hX(S) ×hZ (S) hY (S),

where the fibered product on the right is that of sets.
Schemes are often constructed by recollement, also called gluing, or patching. For

this, one has a collection Xα of schemes, with an open subscheme Uαβ of Xα for any
pair α, β, so that Uαα = Xα. In addition, one has isomorphisms ϑβα of Uαβ with Uβα.
These must satisfy the following compatibility condition: for any α, β, and γ, ϑβα maps
Uαβ ∩ Uαγ isomorphically onto Uβα ∩ Uβγ , and the diagram

Uαβ ∩ Uαγ

ϑβα // Uβα ∩ Uβγ Uβγ ∩ Uβα

ϑγβ

��
Uαγ ∩ Uαβ

ϑγα

// Uγα ∩ Uγβ Uγβ ∩ Uγα

must commute. (It follows that ϑαα is the identity on Xα, and that ϑαβ ◦ ϑβα is the
identity on Uαβ .) Then there is a scheme X, with open embeddings ϕα : Xα → X, such
that: X is the union of the ϕ(Xα); for all α and β, ϕα(Uαβ) = ϕα(Xα) ∩ ϕβ(Xβ); and
ϕα = ϕβ ◦ ϑβα on Uαβ . The same construction works for any ringed spaces.

Let C be the category (Set) of schemes, or the category (Sch/Λ) of schemes over a
base scheme Λ. A contravariant functor F from C to the category (Set) of sets is called
a sheaf if, for every (Zariski) open covering {Uα} of a scheme X, the sequence

F (X) →
∏

F (Uα) ⇉

∏
F (Uα ∩ Uβ)

is exact; that is, any element of F (X) is determined by its restrictions to the open sets
Uα, and a collection of elements in F (Uα) that agree on the overlaps Uα∩Uβ come from
a unique element in F (X).

A representable natural transformation F → G between contravariant functors from
C to (Set) is called open if, for every scheme Z and natural transformation hZ → G,
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the functor F ×G hZ is represented by a scheme Y , and the corresponding morphism
from Y to Z is an open embedding.6

A collection of natural transformations Fα → F is an open covering if each Fα →
F is representable and open, and, for any scheme Z and natural transformation hZ → F ,
the images of the schemes representing Fα×F hZ in Z form an open covering of Z. With
these definitions we have:

Proposition (Grothendieck’s representability theorem). Let F be a contravariant

functor from C to (Set). Suppose there is a family Fα of subfunctors of F , such that

each Fα is representable, and the collection Fα → F is an open covering. Then F is

representable.

To prove this, if Xα represents Fα, the fibered products Fα ×F Fβ determine open
coverings Uαβ of Xα, together with isomorphisms ϑβα of Uαβ with Uβα. One verifies,
using triple fibered products Fα ×F Fβ ×F Fγ, that these isomorphisms satisfy the
compatibility conditions of recollement, so that X is constructed by gluing these Xα.
For details of this verification, see [EGA I′.0.4.5.4]. The same argument works in the
category of ringed spaces.

2. Morphisms

A morphism f : X → Y of schemes is an embedding7 if f factors into an isomor-
phism X → X ′ followed by the inclusion X ′ → Y of a subscheme X ′ of Y . It is an
open embedding if X ′ is an open subscheme of Y , and a closed embedding if X ′ is
a closed subscheme of Y . For a general morphism f : X → Y of schemes, the diagonal
∆f : X → X ×Y X is an embedding ([EGA I.5.3.9, ErrIII .10]).

A morphism f : X → Y is locally of finite type if for every x in X, with y =
f(x), there are affine neighborhoods U ∼= Spec(B) of x and V ∼= Spec(A) of y, with
f(U) ⊂ V , such that the induced map A = Γ(V,OY ) → B = Γ(U,OU) makes B
a finitely generated A-algebra; that is, B ∼= A[X1, . . .Xn]/I for some ideal I. The
morphism is locally of finite presentation if one can find such neighborhoods with
B of finite presentation over A; that is, B ∼= A[X1, . . .Xn]/I, with I = (F1, . . . , Fm)
for some polynomials Fi ∈ A[X1, . . .Xn]/I. When Y is locally Noetherian, these two
notions coincide. A morphism f is of finite type if every point of Y has an affine open
neighborhood V ∼= Spec(A) such that f−1(V ) is covered by a finite number of affine
open sets U ∼= Spec(B) with B a finitely generated A-algebra. This implies that the
same property holds for every affine open subset of Y ([EGA I.6.3]).

Most ordinary morphisms, such as those between algebraic varieties over a field,
will be of finite type. However, morphisms like Spec(K) → X, where K is the function
field of an integral scheme X, or morphisms like Spec(C) → Spec(Q), although not of
finite type, are often useful.

6Such a definition makes sense for any property of a morphism which is preserved by arbitrary
pullbacks and by composing on either side by an isomorphism; all of the properties of morphisms
defined in the next section have this property.

7We avoid the word “immersion” for this notion, since that word has such a different meaning in
differential geometry.
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A scheme X is quasi-compact if its underlying space has the property that every
covering by open sets has a finite subcover; equivalently, X can be covered by a finite
number of affine open subsets. (Note that Spec(A) is quasi-compact for any A, whether
Noetherian or not.) A morphism f : X → Y of schemes is quasi-compact if f−1(U) is
quasi-compact for every affine open subset U of Y . It suffices in fact that this property
holds for every U in one affine open covering of Y ([EGA I.6.6]). A morphism is of
finite type exactly when it is locally of finite type and quasi- compact.

A morphism f : X → Y is separated if the diagonal morphism ∆f : X → X ×Y X
is a closed embedding; equivalently, the image of ∆f is a closed subset of X ×Y X.
E.g., every morphism of affine schemes is separated. The valuative criterion for

separatedness asserts that f is separated if and only if (i) the diagonal X → X×Y X
is quasi-compact, and (ii) for any valuation ring R, with quotient field L, and any
morphisms Spec(R) → Y and Spec(L) → X such that the diagram

Spec(L)
� _

��

// X

f

��
Spec(R) // Y

commutes, there is at most one morphism from Spec(R) toX making the whole diagram
commute; this criterion asserts that the canonical map

HomY (Spec(R), X) → HomY (Spec(L), X)

is injective. When Y is locally Noetherian, one needs this test only when R is a discrete
valuation ring. (See [EGA II.7.2.3] for these criteria.)

A morphism f : X → Y is quasi-separated if it satisfies the first condition (i) of
the criterion for separatedness: the diagonal morphism ∆f : X → X ×Y X is quasi-
compact. Equivalently, for any affine open subsets U and V of X whose images are
contained in an affine open subset of Y , the intersection U ∩V is a finite union of affine
open subsets.

A scheme X is called separated (resp. quasi-separated) if the morphism X →
Spec(Z) is separated (resp. quasi-separated). Every locally Noetherian scheme is quasi-
separated.

A morphism f : X → Y is proper if it is separated, of finite type, and if, for any
morphism Y ′ → Y , the projection X×Y Y

′ → Y ′ is closed (i.e., the image of any closed
subset is closed). The valuative criterion for properness asserts that f is proper if
and only if (i) f is a separated morphism of finite type, and (ii) for any valuation ring
R and morphisms as in the valuative criterion for separatedness, the canonical map
HomY (Spec(R), X) → HomY (Spec(L), X) is surjective (and therefore bijective). When
Y is locally Noetherian, it suffices to verify this criterion when R is a discrete valuation
ring. (See [EGA II.7.3.8])

Recall that a homomorphism A → B of commutative rings is flat if the functor
M → B ⊗A M from A-modules to B-modules is (left) exact. A morphism f : X → Y
of schemes is flat if for every point x in X, the local ring Ox,X is flat as a module over
Oy,Y . A morphism is faithfully flat if it is flat and surjective. For the morphism from
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Spec(B) to Spec(A) coming from a homomorphism A → B, this is equivalent to the
flatness of B over A together with the assertion that the vanishing of B ⊗A M implies
the vanishing of M , for any A-module M . A morphism is fppf if it is faithfully flat
and locally of finite presentation. An important fact is that any fppf morphism is open,
i.e., the image of any open set is open [EGA IV.2.4.6]. A morphism is fpqc if it is
faithfully flat and quasi-compact.

A morphism f : X → Y is unramified if f is of locally of finite presentation and,
for every x in X, with y = f(x), one has my ·Ox = mx and κ(x) is a finite separable field
extension of κ(y). For f locally of finite presentation, this is equivalent to each of the
following assertions: (i) the diagonal morphism X → X ×Y X is an open embedding;
(ii) the sheaf Ω1

X/Y of relative differentials vanishes; (iii) for any nilpotent ideal I in a

commutative ring Λ, and any morphism Spec(Λ/I) → X, there is at most one morphism
from Spec(Λ) to X so that the following diagram commutes:

Spec(Λ/I)
� _

��

// X

f

��
Spec(Λ) //

::u
u

u
u

u

Y

That is, the canonical map

HomY (Spec(Λ), X) → HomY (Spec(Λ/I), X)

is injective.
A morphism f : X → Y is étale if it is unramified and flat. Equivalently, f is locally

of finite presentation and, with Λ and I as above, one can always fill in the diagram
uniquely: the canonical map HomY (Spec(Λ), X) → HomY (Spec(Λ/I), X) is bijective.

A morphism f : X → Y is smooth if it is locally of finite presentation, flat, and, for
any morphism Spec(L) → Y , with L a field, the fiber X×Y Spec(L) is regular, i.e., all its
local rings are regular local rings. Equivalently, f is locally of finite presentation, and,
with Λ and I as above, the canonical map HomY (Spec(Λ), X) → HomY (Spec(Λ/I), X)
is surjective. Equivalently, any point on X has a neighborhood U , mapped to an open
subset V of Y , such that there is a commutative diagram

U

��

� � // Spec(A[X1, . . . , Xn]/(F1, . . . , Fm))

��

V
� � // Spec(A)

with the horizontal arrows open embeddings, and with rank(∂Fi/∂Xj) ≡ m on U . For f
étale, one has the same local description but with m = n. A smooth morphism locally
factors into a composition U → V × Ar → V , where the first map is étale and the
second is the projection ([EGA IV.17.11.4]). Other characterizations and properties of
unramified, étale, and smooth morphisms can be found in [EGA IV. §17].

A morphism is said to be formally unramified, resp. formally étale, resp. for-

mally smooth if it satisfies the condition on liftings of morphisms Spec(Λ/I) → X
to Spec(Λ) → X stated above for unramified, resp. étale, resp. smooth morphisms.
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Smooth is equivalent to formally smooth and locally of finite presentation (and simi-
larly for étale, unramified). We call particular attention to morphisms that are formally

unramified and locally of finite type. This is a class of morphisms which naturally gener-
alizes embeddings. By [EGA IV.17.2.1], a morphism is formally unramified if and only
if it has trivial sheaf of relative differentials (see the section on differentials, below).

A morphism f : X → Y is affine if any point of Y has an affine open neighborhood
V such that f−1(V ) is an affine open subset of X. It follows that f−1(V ) is affine for
every affine open set V in Y . An affine morphism is separated and quasi-compact.

A morphism f : X → Y is quasi-affine if any point of Y has an affine open neigh-
borhood V such that f−1(V ) is isomorphic to a quasi-compact open subscheme of an
affine scheme. Such a morphism is automatically separated and quasi-compact.

A morphism f : X → Y is finite if it is affine, and for any affine open V ∼= Spec(A)
of Y , f−1(V ) ∼= Spec(B), with B finitely generated as an A-module. A morphism
f : X → Y is quasi-finite if it is of finite type and each fiber f−1(y) is a finite set.

If Y is locally Noetherian, the following are equivalent: (i) f is finite; (ii) f is proper
and affine; (iii) f is proper and quasi-finite [EGA III.4.4.2].

A morphism f : X → Y is projective if there is a quasi-coherent OY -module E of
finite type, such that f factors into a closed embedding X → Proj(Sym(E)) followed
by the canonical projection from Proj(Sym(E)) to Y .

An invertible sheaf is a locally free sheaf of rank one. An invertible sheaf L on
a quasi-compact scheme X is ample if, for any coherent sheaf F on X, there is an
integer n0 such that, for all n ≥ n0, the sheaf F ⊗ L⊗n is generated by its sections. If
f : X → Y is a quasi-compact morphism, an invertible sheaf L on X is f-ample if any
point of Y has an affine open neighborhood U such that the restriction of L to f−1(U)
is ample.

A morphism f : X → Y is quasi-projective if it is of finite type, and there is an
f -ample invertible sheaf. If Y is quasi-compact (or its underlying space is Noetherian),
this is equivalent to f factoring X → Proj(Sym(E)) → Y as above, but with the first
map only a locally closed embedding ([EGA II.5.3.2]). A projective morphism is proper
and quasi-projective; the converse is true if the target scheme Y is quasi-compact or its
underlying space is Noetherian ([EGA II.5.5.3]).

A morphism f : X → Y is an epimorphism if for any two morphisms g and h
from Y to any scheme Z, g ◦ f = h ◦ f implies g = h; that is, the canonical mapping
from Hom(Y, Z) to Hom(X,Z) is always injective. It is an effective epimorphism if,
whenever a morphism g̃ : X → Z is given such that g̃ ◦ p = g̃ ◦ q, where p and q are the
two projections from X ×Y X to X, then there is a unique morphism g : Y → Z with
g ◦ f = g̃; that is,

Hom(Y, Z) → Hom(X,Z) ⇉ Hom(X ×Y X,Z)

is exact. Any fppf or fpqc morphism is an effective epimorphism (see Appendix A).
A morphism f : X → Y is a monomorphism if for any morphisms g and h from any

scheme S to X, f ◦g = f ◦h implies g = h; that is, the map Hom(S,X) → Hom(S, Y ) is
always injective. Equivalently, the diagonal map ∆f : X → X ×Y S is an isomorphism
([EGA I.5.2.8]). In particular, f is separated; if it is locally of finite presentation, it is
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unramified. A morphism is radicial if, whenever S = Spec(L), for L a field, the map
Hom(S,X) → Hom(S, Y ) is always injective; equivalently, the map is injective on the
underlying sets of points, and, for every point x of X, the field extension κ(f(x)) ⊂ κ(x)
is purely inseparable ([EGA I.3.5.8]). If f is locally of finite type, it is a monomorphism
if and only if it is unramified and radicial ([EGA IV.17.2.6]).

Each of the properties of morphisms f : X → Y listed here is preserved by arbitary
base change (except epimorphism, where this is an extra condition, termed universal

epimorphism). That is, if f has the property, and Y ′ → Y is an arbitrary morphism,
then the pullback X ×Y Y

′ → Y ′ also has the property. If f : X → Y and f ′ : X ′ → Y ′

each have one of these properties, and there are morphisms from Y and Y ′ to a scheme
S, then the fibered product X×SX

′ → Y ×SY
′ also has the property. If f : X → Y and

g : Y → Z each have one of these properties, the composition g◦f also has the property;
however, in the case of projective or quasi-projective morphisms, one must assume that
Z is quasi-compact (or its underlying space is Noetherian). Any isomorphism satisfies
all the properties. There are also results that say if g : Y → Z satisfies an appropriate
condition (often separated suffices), if g ◦ f has the property, then f has the property.
And, when Y ′ → Y is surjective and satisfies an appropriate condition (faithfully flat
and quasi-compact is common), if X×Y Y

′ → Y ′ satisfies a property, then f will satisfy
the property.8

3. Differentials

We recall and collect some basic facts about sheaves of differentials. We start with
affine schemes (algebras) and the algebraic properties of modules of differentials. Then
we pass to schemes and their sheaves of relative differentials.

Attached to a surjective ring homomorphism A → B, with kernel I, is the module
I/I2, which naturally has the structure of B-module. The associated sheaf is the
conormal sheaf of SpecB in SpecA. This construction applied to the relative diagonal
gives the module of relative differentials.

Let B be an A-algebra. Then the module of differentials ΩB/A is the sheaf I/I2,
where I is the kernel of the multiplication map B⊗AB → B. It comes with a differential
map d : B → ΩB/A, defined by df = 1 ⊗ f − f ⊗ 1 for f ∈ B. This module satisfies
the following universal property: for any B-module M and map d′ : B → M which is
additive, satisfies the Leibnitz rule d′(fg) = f dg + g df , and vanishes on A, there is a
unique B-module homomorphism ϕ : ΩB/A →M such that d′ = ϕ ◦ d (see [47, II.8]).

Considering, again, a surjective ring homomorphism A→ B with kernel I, if ϕ : A→
A′ is an arbitrary ring homomorphism, we set B′ = B ⊗A A′, so A′ → B′ is also
surjective. Let I ′ denote the kernel of A′ → B′. Then there is a morphism of B-
modules I/I2 → I ′/I ′2, induced by f 7→ ϕ(f). It is natural in the sense that given

8These and related results can be found in the following sections of [EGA], listed with the cor-
responding property: locally of finite type, IV.1.3.4; locally of finite presentation, IV.1.4.3; finite
type, IV.1.5.4, quasi-compact, IV.1.1.2; separated, I.2.2; quasi- separated IV.1.2.2; proper II.5.4.2; flat
IV.2.1; faithfully flat, IV.2.2.13; unramified, étale, and smooth, IV.17.3.3; affine, II.1.6.2; quasi-affine
II.5.1.10; finite, II.6.1.5; quasi-finite, II.6.2.4; projective II.5.5.5; quasi-projective II.5.3.4; radicial I.3.5.
General references for schemes and morphisms are: [47], [24], [74], [68], [38].
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ψ : A′′ → A′ as well, with B′′ = B′ ⊗A′ A′′ ∼= B ⊗A A′′, then we get a commutative
triangle

I/I2 //

!!CC
CC

CC
CC

I ′/I ′2

||zz
zz

zz
zz

I ′′/I ′′2

This is because the right-hand map sends ϕ(f) to ψ(ϕ(f)) = ψ ◦ ϕ(f).
We have a morphism of B-modules I/I2 → I ′/I ′2, or just as well, a morphism of

B′-modules (I/I2)⊗B B
′ → I ′/I ′2. This is an isomorphism when A′ is flat over A, and

also when A → B is left inverse to some B → A and the base change is induced by
some base change on B ([EGA IV.16.2.2–3]): when ϕ is flat we have

(I/I2) ⊗B B
′ ∼= I ′/I ′2,

and when B → A is a ring homomorphism, having the given A → B as left inverse,
and B′ is a B-algebra, then with A′ = A⊗B B

′ (with the induced ϕ : A→ A′),

(I/I2) ⊗B B
′ ∼= I ′/I ′2.

If A′ and B are A-algebras, and we set B′ = B ⊗A A
′, then we have

ΩB/A ⊗B B
′ ∼= ΩB′/A′.

In other words, formation of ΩB/A commutes with arbitrary base change. A reference
is [EGA 0.20.5.5]; a hint to following the (terse) proof is to apply the second conormal
sheaf isomorphism above to the diagram

B′ // B′ ⊗A′ B′ // B′

B

ffMMMMMM
// B ⊗A B

hhQQQQ

// B

eeKKKKKK

A

OO

// B′

OO

A

ffNNNNNN

OO

// B

iiRRRRRRRRR

OO

There are two fundamental exact sequences on differentials. First fundamental exact

sequence: ([66, Theorem 25.1], [EGA 0.20.5.7]) Given ring homomorphisms A → B
and B → C, this is the exact sequence

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0.

This is exact on the left as well when C is a formally smooth B-algebra. Second

fundamental exact sequence: ([66, Theorem 25.2], [EGA 0.20.5.14]) As above, with
B → C surjective with kernel J , this is the exact sequence

J/J2 → ΩB/A ⊗B C → ΩC/A → 0.

If C is formally smooth over A then this is also left exact. These sequences are functorial
[EGA 0.20.5.7.3], [EGA 0.20.5.11.3]. Explicitly, this means that if A′ is an A-algebra,
and we set B′ = B ⊗A A

′ and C ′ = C ⊗A A
′ then the first fundamental exact sequence

of the primed rings fits into a commutative diagram with that above, and the same is
true for the second fundamental exact sequence when B → C is surjective.
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If f : X → Y is a locally closed embedding of schemes, then f factors through some
open subscheme Y ′ ⊂ Y with X → Y ′ a closed embedding. Now there is a quasi-
coherent sheaf of ideals I on Y ′ which defines the image of X as a subscheme. We call
f ∗(I/I2) the conormal sheaf to the embedding of X in Y . It is denoted N ∗

X/Y , or N ∗
f .

If the restriction of f to an affine open subset SpecB of X is closed embedding to some
affine open SpecA in Y then the restriction of N ∗

X/Y to SpecB is the quasi-coherent

sheaf associated to I/I2, where I is the kernel of A→ B.
For a general map of schemes X → Y , the relative diagonal X → X ×Y X is

an embedding The conormal sheaf to the relative diagonal is the sheaf of relative

differentials of X over Y . It is denoted ΩX/Y , or Ωf if f denotes the map of schemes.
Consider a cartesian diagram of schemes

X ′
f ′

//

h
��

Y ′

g

��
X

f // Y

Then we have an isomorphism

h∗ΩX/Y
∼= ΩX′/Y ′.

When f is a locally closed embedding, there is an induced morphism

h∗N ∗
X/Y → N ∗

X′/Y ′ .

These are natural in the sense that in each case a morphism Y ′′ → Y ′ gives rise to
a commutative triangle of sheaves on X ′′ = X ×Y Y ′′ (this is immediate from the
algebraic preliminaries for the morphism of conormal sheaves, and is established for the
isomorphism of sheaves of differentials by extending the large diagram in Exercise ??).
The morphism of conormal sheaves is an isomorphism when g is flat.

The fundamental exact sequences, for schemes, read as follows. If f : X → Y and
g : Y → Z are morphisms, then there is an exact sequence of sheaves on X

f ∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

If f is formally smooth then this is left exact as well. When f is a locally closed
embedding, we have an exact sequence of sheaves on X

N ∗
X/Y → f ∗ΩY/Z → ΩX/Z → 0.

This is also left exact when g◦f is formally smooth. These exact sequences are natural in
the sense that if Z ′ → Z is a morphism and we set X ′ = X×ZZ

′ and Y ′ = Y ×ZZ
′ then

there are commutative diagrams relating the sequences for the primed and unprimed
schemes.

The sheaf Ωf , quasi-coherent in general, is of finite type when f is locally of finite
type [EGA IV.16.3.9]. If f is formally smooth and locally of finite type then Ωf is
locally free of finite type [EGA IV.17.2.3(i)]. For a smooth morphism (i.e., one that
is formally smooth and locally of finite presentation) we use the notation of relative
dimension, a locally constant function on the source. This is the rank of Ωf .
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Let X and Y be schemes over a base scheme S. Consider the fiber product X×S Y ,
with projections p to X and q to Y . Then ([EGA IV.16.4.23])

p∗ΩX/S ⊗ q∗ΩY/S
∼= ΩX×SY/S.

The following is an important consequence of the second fundamental exact se-
quence, for schemes. Let f : X → Y be a smooth morphism. Let s : Y → X be a
section of f (so f ◦ s = 1Y ). Then

N ∗
s
∼= s∗ΩX/Y .

In this situation we have, further, that s is a regular embedding, meaning that in a
neighborhood of a point y ∈ Y if we let r denote the relative dimension of f at s(y)
then s(Y ) is defined near s(y) by r equations, forming a regular sequence in the local
ring Os(y),X . This fact follows from [EGA IV.17.12.1].

4. Grothendieck topologies

A Grothendieck topology T on a category S consists of a set Cov(T ) of families
of maps {ϕα : Uα → U}α∈A, with each ϕα a morphism in S; these families, called
coverings, must satisfy the following conditions:

(1) If ϕ : V → U is an isomorphism in S, then {ϕ : V → U} is a covering.
(2) If {Uα → U}α∈A is a covering, and {Vαβ → Uα}β∈Bα

is a covering for each α,
then the family {Vαβ → U}α∈A,β∈Bα

, obtained by composition, is a covering.
(3) If {Uα → U}α∈A is a covering, and V → U is any morphism in S, each fiber

product U α×U V must exist in S, and {U α×U V → V }α∈A is a covering.
A category with a Grothendieck topology is called a site.
When S is the category (Top) of topological spaces, taking the coverings of a space

U by a family of open subspaces Uα forms a Grothendieck topology. Similarly when
S is any category of schemes which contains any open subscheme of any scheme in it,
one has the Zariski topology, where a covering is a family of Zariski open subsets Uα

of U , with each ϕα the inclusion of Uα in U , such that U is the union of these open
sets. The examples of most importance in this text are the étale topology and the
smooth topology; in these the morphisms ϕα are taken to be étale resp. smooth, with
the condition that U is the union of the images of the Uα. Similarly one has the flat

topology, also called the fppf topology, where one requires that the morphisms in a
covering are faithfully flat and locally of finite presentation.

In each of these topologies, if {Uα → U} is a covering, then the morphism V =∐
Uα → U is an fppf morphism, which means that descent (Appendix A) can be applied.

Note also that if U is a disjoint union of open schemes Uα, the family {Uα → U} is a
covering in any of these topologies.

Although this text does not require any sophisticated knowledge of Grothendieck
topologies, more can be found in [3] and [68].
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5. Sheaves and base change

Our aim here is to describe the basic base change homomorphisms for sheaves,
including compatibilities for successive base changes, for which we could not find com-
plete references. We will see that these compatibilites follow formally from properties
of adjoint functors that appear in Appendix B.

For a sheaf F on a space X, we denote its sections over an open subset U of X either
by F(U) or Γ(U,F). The stalk Fx of F at a point x in X is the direct limit lim−→F(U),
as U varies over open neighborhoods of x. For any continuous map f : X → Y of
topological spaces, and a sheaf F on X, there is a pushforward sheaf f∗(F) on Y ,
whose sections over an open subset V of Y are defined by the formula

f∗(F)(V ) = F(f−1(V )).

This pushforward is functorial: if also g : Y → Z, then

(g ◦ f)∗(F) = g∗(f∗(F)).

If G is a sheaf on Y , there is a sheaf f−1(G), whose sections over an open U in X
are defined to be those collections of elements (s′x)x∈U , with s′x in the stalk Gf(x), such
that for any x0 in U there is a neighborhood V of f(x0) in Y , a section s ∈ G(V ) and a
neighborhood W of x0 contained in U ∩ f−1(V ), such that s′x is the germ defined by s
at f(x) for all x in W . This gives a functor from sheaves on Y to sheaves on X, which
is a left adjoint to f∗. That is, for any sheaves F on X and G on Y , there is a canonical
bijection

Hom(f−1(G),F) ↔ Hom(G, f∗(F)).

In fact, an element on each side of this display can be identified with a collection of
maps from G(V ) to F(U), for all open U ⊂ X and V ⊂ Y with f(U) ⊂ V , such that
whenever U ′ ⊂ U and V ′ ⊂ V , with f(U ′) ⊂ V ′, the diagram

G(V ) //

��

F(U)

��
G(V ′) // F(U ′)

commutes. This bijection is natural in morphisms of sheaves on X and Y , and makes
f−1 a left adjoint of f∗, and f∗ a right adjoint of f−1, see [EGA 0.3.5, 0.3.7].

The same formula for the pushforward works when f is a morphism of ringed spaces,
and F is a sheaf of OX -modules, in which case f∗(F) is a sheaf of OY -modules. Here f∗
defines a functor f∗ : S(X) → S(Y ) from the category S(X) of sheaves of OX -modules
to the category S(Y ) of sheaves of OY -modules. A left adjoint to this functor f∗ is
denoted f ∗; this is constructed to be the functor that takes a sheaf G of OY -modules
to the sheaf

f ∗(G) := OX ⊗f−1(OY ) f
−1(G).

(Here, to be precise, one should make a choice of this tensor product.) This gives a
functor f ∗ : S(Y ) → S(X) from sheaves of OY -modules to sheaves of OX -modules, and



app-100 Glossary

one again has a canonical bijection

Hom(f ∗(G),F) ↔ Hom(G, f∗(F)),

making f∗ and f ∗ adjoint functors ([EGA 0.3.5, 0.4.4]), [47, §II.5]).
Because of the choice of tensor product in the definition, if g : Y → Z is another

morphism, and H is a sheaf of OZ-modules, then (g ◦ f)∗(H) is not strictly equal to
f ∗(g∗(H)), but there is a canonical isomorphism between them.

This adjoint pair comes equipped with canonical natural transformations ǫ =
ǫf : 1S(Y ) ⇒ f∗ ◦ f ∗, and δ = δf : f ∗ ◦ f∗ ⇒ 1S(X). For a sheaf G on Y we have a
canonical morphism ǫ : G → f∗(f

∗(G)), functorial in G; and for a sheaf F on X, we
have a canonical morphism δ : f ∗(f∗(F)) → F , functorial in F . Explicitly, a section of
G on an open V in Y determines a section of f ∗(G) on f−1(V ), and hence a section of
f∗(f

∗(G)) on V . A section of f ∗(f∗(F)) on an open U of X determines an element of
the stalk Fx at all x in U , and these come from a section of F on U .

A sheaf F of OX -modules is quasi-coherent if, for all x in X, there is a neighbor-

hood U of x and a presentation O(I)
U → O(J)

U → F → 0, for some (not necessarily finite)
index sets I and J . If G is quasi-coherent on Y , then f ∗(G) is always quasi-coherent
on X. If f is a quasi-compact and quasi-separated morphism of schemes, and F is
quasi-coherent on X, then f∗(F) is quasi-coherent on Y (see [EGA I.9.2.1]). With
these hypotheses, f∗ and f ∗ are adjoint functors between quasi-coherent sheaves on X
and quasi-coherent sheaves on Y .

A sheaf F of OX -modules is of finite type if any point has an open neighborhood
U on which there is a surjection On

U → F |U→ 0 for some integer n, The sheaf is
coherent if, in addition, for all open subsets U of X, the kernel of any homomorphism
Om

U → F of OU -modules is of finite type. If a scheme X is locally Noetherian, i.e., it
has a covering by open subschemes isomorphic to the Spec’s of Noetherian rings, then
OX is coherent. For any morphism f : X → Y , if G is coherent on Y , and if OX is
coherent on X, then f ∗(G) is coherent on X ([EGA 0.5.3]). If f : X → Y is a proper
morphism, with Y locally Noetherian, and F is a coherent sheaf on X, then f∗(F) is a
coherent sheaf on Y ; in fact, all the higher direct images Rnf∗(F) are coherent ([EGA

III.3.2.1]).
Now consider a commutative diagram

W

q

��

g // Y

p

��
X

f
// Z

of ringed spaces. There is an associated base change map

p∗(f∗(F)) → g∗(q
∗(F))
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for any sheaf F of OX -modules.9 This is a formal consequence of adunction (Section
B.3). To construct this base change map, consider the diagram

S(W )

q∗

��

g∗ // S(Y )

p∗

��
S(X)

f∗

// S(Z)

This diagram strictly commutes: f∗ ◦ q∗ = (f ◦ q)∗ = (p◦g)∗ = p∗ ◦g∗. Therefore we can
take α : f∗ ◦ q∗ ⇒ p∗ ◦ g∗ to be the identity map. From Definition B.21, this gives a base
change natural transformation (2-morphism) c = cα from p∗ ◦ f∗ to g∗ ◦ q∗. The base
change transformation p∗ ◦ f∗ ⇒ g∗ ◦ q

∗ is chararacterized either by the fact that its

adjoint with respect to p is the transformation f∗ = f∗◦1S(X)
ǫq

⇒ f∗ ◦q∗◦q
∗ = p∗◦g∗◦q

∗,

or that its adjoint with respect to g is the composite g∗ ◦ p∗ ◦ f∗
α′

⇒ q∗ ◦ f ∗ ◦ f∗
δf

⇒ q∗

(by Exercise B.43(3)).10

In this setting, these formal adjoint constructions can be made explicit. If U ⊂ Y
and U ′ ⊂ Y ′ are open subsets with p(U ′) ⊂ U , a section s in (f∗F)(U) determines a
section s′ in p∗(f∗F)(U ′), and also a section s′′ in (g∗(q

∗(F)))(U ′) = (q∗(F))(q−1(U ′)).
Show that the base change map c takes s′ to s′′, and show that c is determined by this
property. The corresponding α′ : g∗ ◦ p∗

∼
⇒ q∗ ◦ f ∗ agrees with the composition of the

canonical isomorphisms g∗ ◦ p∗ ∼= (p ◦ g)∗ = (f ◦ q)∗ ∼= q∗ ◦ f ∗ (cf. [EGA 0.3.5.5]).
Consider a commutative diagram of ringed spaces,

U

r

��

i //

β

AA
AA

AA
AA

AA
AA

AA
AA

W

q

��

g //

α

AA
AA

AA
AA

AA
AA

AA
AA

Y

p

��
V

h
// X

f
// Z

with two commuting squares labeled with α and β, and label the outside square with
γ:

U

r

��

g◦i //

γ

@@
@

@@
@@

@@
@

@@
@@

Y

p

��
V

f◦h
// Z

It follows from Exercise B.44 that the following diagram commutes:

p ∗ ◦f∗ ◦ h∗

cα

��

p∗ ◦ (f ◦ h)∗
cγ

#+PPPPPPPPPPP

PPPPPPPPPPP

g∗ ◦ q
∗ ◦ h∗ cβ

+3 g∗ ◦ i∗ ◦ r
∗ (g ◦ i)∗ ◦ r

∗

9The same works for topological spaces, replacing pullbacks g
∗ by g

−1.
10See [42, XII.4, XVII.2.1] for a discussion about this point.
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One has also the opposite base change maps c′α : f ∗◦p∗ ⇒ q∗◦g∗, c′β : h∗◦q∗ ⇒ r∗◦i∗,
and c′γ : (f ◦h)∗◦p∗ ⇒ r∗◦(g◦i)∗. The same Exercise B.44 gives a commutative diagram

h∗ ◦ f ∗ ◦ p∗
∼

c′α
��

(f ◦ h)∗ ◦ p∗
c′γ

#+PPPPPPPPPPP

PPPPPPPPPPP

h∗ ◦ q∗ ◦ g
∗

c′
β

+3 r∗ ◦ i
∗ ◦ g∗

∼
r∗ ◦ (g ◦ i)∗

(cf. [42, XII.4.4]).
From Exercise B.43(1), we get commutative diagrams

p∗

ǫg

��

ǫf
+3 p∗ f∗ f

∗

c

��

g∗ p∗ f∗

c

��

α′

+3 q∗ f ∗ f∗

δf

��

f∗

ǫq

��

ǫp
+3 p∗ p

∗ f∗

c

��
g∗ g

∗ p∗
α′

+3 g∗ q
∗ f ∗ g∗ g∗ q

∗

δg
+3 q∗ f∗ q∗ q

∗ p∗ g∗ q
∗

The same adjoint formalism applies in the context of sheaves on arbitrary sites. It
can also be applied with higher direct images. To see this, note that if f : X → Y
and g : Y → Z are mappings, the Leray spectral sequence gives (edge homomorphism)
mappings

Rng∗(f∗F) → Rn(g ◦ f)∗(F) → g∗(R
nf∗(F))

(cf. [EGA III.12.2.5]). In particular, given a commutative diagram as above, and any
n ≥ 0, one has a natural transformation α : Rnf∗ ◦ q∗ ⇒ p∗ ◦Rng∗, given by

Rnf∗(q∗(F)) → Rn(f ◦ q)∗(F) = Rn(p ◦ g)∗(F) → p∗(R
ng∗(F)).

By the formal properties of adjoints, this determines a natural transformation cα from
p∗ ◦Rnf∗ to Rng∗ ◦ q∗. In particular we have homomorphisms

p∗(Rnf∗(F)) → Rng∗(q
∗(F)),

which are natural in F . One has the same compatibility as before, when two commu-
tative diagrams are pasted together, again by formal properties of adjoint functors.11

The same formalism applies when one has adjoint functors Rf∗ and Lf ∗ on derived
categories (e.g. [46], Cor. 5.11), giving natural base change maps

(Lp∗) ◦ (Rf∗)(F
·) → (Rg∗) ◦ (Lq∗)(F ·),

with the corresponding compatibilites when two commutative diagrams are combined.

11These base change maps agree with those constructed under additional hypotheses in [EGA

III.1.4.15], [EGA IV.1.7.21], and [47, §III.9.3].


